Harvard-MIT Mathematics Tournament

February 19, 2005

Individual Round: Algebra Subject Test — Solutions

1. How many real numbers x are solutions to the following equation?

$$|x-1| = |x-2| + |x-3|$$

Solution: $\boxed{2}$

If x < 1, the equation becomes (1 - x) = (2 - x) + (3 - x) which simplifies to x = 4, contradicting the assumption x < 1. If $1 \le x \le 2$, we get (x - 1) = (2 - x) + (3 - x), which gives x = 2. If $2 \le x \le 3$, we get (x - 1) = (x - 2) + (3 - x), which again gives x = 2. If $x \ge 3$, we get (x - 1) = (x - 2) + (x - 3), or x = 4. So 2 and 4 are the only solutions, and the answer is 2.

2. How many real numbers x are solutions to the following equation?

$$2003^x + 2004^x = 2005^x$$

Solution: 1

Rewrite the equation as $(2003/2005)^x + (2004/2005)^x = 1$. The left side is strictly decreasing in x, so there cannot be more than one solution. On the other hand, the left side equals 2 > 1 when x = 0 and goes to 0 when x is very large, so it must equal 1 somewhere in between. Therefore there is one solution.

3. Let x, y, and z be distinct real numbers that sum to 0. Find the maximum possible value of

$$\frac{xy + yz + zx}{x^2 + y^2 + z^2}.$$

Solution: -1/2

Note that $0 = (x+y+z)^2 = x^2+y^2+z^2+2xy+2yz+2zx$. Rearranging, we get that $xy+yz+zx = -\frac{1}{2}(x^2+y^2+z^2)$, so that in fact the quantity is always equal to -1/2.

4. If a, b, c > 0, what is the smallest possible value of $\left\lfloor \frac{a+b}{c} \right\rfloor + \left\lfloor \frac{b+c}{a} \right\rfloor + \left\lfloor \frac{c+a}{b} \right\rfloor$? (Note that $\lfloor x \rfloor$ denotes the greatest integer less than or equal to x.)

Solution: 4

Since $\lfloor x \rfloor > x - 1$ for all x, we have that

$$\left\lfloor \frac{a+b}{c} \right\rfloor + \left\lfloor \frac{b+c}{a} \right\rfloor + \left\lfloor \frac{c+a}{b} \right\rfloor > \frac{a+b}{c} + \frac{b+c}{a} + \frac{c+a}{b} - 3$$

$$= \left(\frac{a}{b} + \frac{b}{a} \right) + \left(\frac{b}{c} + \frac{c}{b} \right) + \left(\frac{c}{a} + \frac{a}{c} \right) - 3.$$

But by the AM-GM inequality, each of the first three terms in the last line is at least 2. Therefore, the lefthand side is greater than 2+2+2-3=3. Since it is an integer, the smallest value it can be is 4. This is in fact attainable by letting (a, b, c) = (6, 8, 9).

1

5. Ten positive integers are arranged around a circle. Each number is one more than the greatest common divisor of its two neighbors. What is the sum of the ten numbers?

Solution: 28

First note that all the integers must be at least 2, because the greatest common divisor of any two positive integers is at least 1. Let n be the largest integer in the circle. The greatest common divisor of its two neighbors is n-1. Therefore, each of the two neighbors is at least n-1 but at most n, so since $n-1 \nmid n$ for $n-1 \geq 2$, they must both be equal to n-1. Let m be one of the numbers on the other side of n-1 from n. Then $\gcd(n,m)=n-2$. Since $n-2\geq 0$, $n-2\mid n$ only for n=3 or 4. If n=3, each number must be 2 or 3, and it is easy to check that there is no solution. If n=4, then it is again not hard to find that there is a unique solution up to rotation, namely 4322343223. The only possible sum is therefore 28.

6. Find the sum of the x-coordinates of the distinct points of intersection of the plane curves given by $x^2 = x + y + 4$ and $y^2 = y - 15x + 36$.

Solution: $\boxed{0}$

Substituting $y = x^2 - x - 4$ into the second equation yields

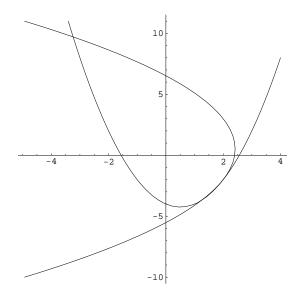
$$0 = (x^{2} - x - 4)^{2} - (x^{2} - x - 4) + 15x - 36$$

$$= x^{4} - 2x^{3} - 7x^{2} + 8x + 16 - x^{2} + x + 4 + 15x - 36$$

$$= x^{4} - 2x^{3} - 8x^{2} + 24x - 16$$

$$= (x - 2)(x^{3} - 8x + 8) = (x - 2)^{2}(x^{2} + 2x - 4).$$

This quartic has three distinct real roots at $x = 2, -1 \pm \sqrt{5}$. Each of these yields a distinct point of intersection, so the answer is their sum, 0.



7. Let x be a positive real number. Find the maximum possible value of

$$\frac{x^2 + 2 - \sqrt{x^4 + 4}}{x}.$$

Solution: $2\sqrt{2}-2$

Rationalizing the numerator, we get

$$\frac{x^2 + 2 - \sqrt{x^4 + 4}}{x} \cdot \frac{x^2 + 2 + \sqrt{x^4 + 4}}{x^2 + 2 + \sqrt{x^4 + 4}} = \frac{(x^2 + 2)^2 - (x^4 + 4)}{x(x^2 + 2 + \sqrt{x^4 + 4})}$$

$$= \frac{4x^2}{x(x^2 + 2 + \sqrt{x^4 + 4})}$$

$$= \frac{4}{\frac{1}{x}(x^2 + 2 + \sqrt{x^4 + 4})}$$

$$= \frac{4}{x + \frac{2}{x} + \sqrt{x^2 + \frac{4}{x^2}}}.$$

Since we wish to maximize this quantity, we wish to minimize the denominator. By AM-GM, $x + \frac{2}{x} \ge 2\sqrt{2}$ and $x^2 + \frac{4}{x^2} \ge 4$, so that the denominator is at least $2\sqrt{2} + 2$. Therefore,

$$\frac{x^2 + 2 - \sqrt{x^4 + 4}}{x} \le \frac{4}{2\sqrt{2} + 2} = 2\sqrt{2} - 2,$$

with equality when $x = \sqrt{2}$.

8. Compute

$$\sum_{n=0}^{\infty} \frac{n}{n^4 + n^2 + 1}.$$

Solution: 1/2

Note that

$$n^4 + n^2 + 1 = (n^4 + 2n^2 + 1) - n^2 = (n^2 + 1)^2 - n^2 = (n^2 + n + 1)(n^2 - n + 1).$$

Decomposing into partial fractions, we find that

$$\frac{n}{n^4 + n^2 + 1} = \frac{1}{2} \left(\frac{1}{n^2 - n + 1} - \frac{1}{n^2 + n + 1} \right).$$

Now, note that if $f(n) = \frac{1}{n^2 - n + 1}$, then $f(n+1) = \frac{1}{(n+1)^2 - (n+1) + 1} = \frac{1}{n^2 + n + 1}$. It follows that

$$\sum_{n=0}^{\infty} \frac{n}{n^4 + n^2 + 1} = \frac{1}{2} \Big((f(0) - f(1)) + (f(1) - f(2)) + (f(2) - f(3)) + \cdots \Big).$$

Since f(n) tends towards 0 as n gets large, this sum telescopes to f(0)/2 = 1/2.

9. The number 27,000,001 has exactly four prime factors. Find their sum.

Solution: 652

First, we factor

$$27x^{6} + 1 = (3x^{2})^{3} + 1$$

$$= (3x^{2} + 1)(9x^{4} - 3x^{2} + 1)$$

$$= (3x^{2} + 1)((9x^{4} + 6x^{2} + 1) - 9x^{2})$$

$$= (3x^{2} + 1)((3x^{2} + 1)^{2} - (3x)^{2})$$

$$= (3x^{2} + 1)(3x^{2} + 3x + 1)(3x^{2} - 3x + 1).$$

Letting x=10, we get that $27000001=301\cdot 331\cdot 271$. A quick check shows that $301=7\cdot 43$, so that $27000001=7\cdot 43\cdot 271\cdot 331$. Each factor here is prime, and their sum is 652.

10. Find the sum of the absolute values of the roots of $x^4 - 4x^3 - 4x^2 + 16x - 8 = 0$.

Solution: $2 + 2\sqrt{2} + 2\sqrt{3}$

$$x^{4} - 4x^{3} - 4x^{2} + 16x - 8 = (x^{4} - 4x^{3} + 4x^{2}) - (8x^{2} - 16x + 8)$$

$$= x^{2}(x - 2)^{2} - 8(x - 1)^{2}$$

$$= (x^{2} - 2x)^{2} - (2\sqrt{2}x - 2\sqrt{2})^{2}$$

$$= (x^{2} - (2 + 2\sqrt{2})x + 2\sqrt{2})(x^{2} - (2 - 2\sqrt{2})x - 2\sqrt{2}).$$

But noting that $(1+\sqrt{2})^2 = 3+2\sqrt{2}$ and completing the square,

$$x^{2} - (2 + 2\sqrt{2})x + 2\sqrt{2} = x^{2} - (2 + 2\sqrt{2})x + 3 + 2\sqrt{2} - 3$$
$$= (x - (1 + \sqrt{2}))^{2} - (\sqrt{3})^{2}$$
$$= (x - 1 - \sqrt{2} + \sqrt{3})(x - 1 - \sqrt{2} - \sqrt{3}).$$

Likewise,

$$x^{2} - (2 - 2\sqrt{2})x - 2\sqrt{2} = (x - 1 + \sqrt{2} + \sqrt{3})(x - 1 + \sqrt{2} - \sqrt{3}),$$

so the roots of the quartic are $1 \pm \sqrt{2} \pm \sqrt{3}$. Only one of these is negative, namely $1 - \sqrt{2} - \sqrt{3}$, so the sum of the absolute values of the roots is

$$(1+\sqrt{2}+\sqrt{3})+(1+\sqrt{2}-\sqrt{3})+(1-\sqrt{2}+\sqrt{3})-(1-\sqrt{2}-\sqrt{3})=2+2\sqrt{2}+2\sqrt{3}.$$