Harvard-MIT Mathematics Tournament

February 19, 2005

Individual Round: Calculus Subject Test

- 1. Let $f(x) = x^3 + ax + b$, with $a \neq b$, and suppose the tangent lines to the graph of f at x = a and x = b are parallel. Find f(1).
- 2. A plane curve is parameterized by $x(t) = \int_t^\infty \frac{\cos u}{u} du$ and $y(t) = \int_t^\infty \frac{\sin u}{u} du$ for $1 \le t \le 2$. What is the length of the curve?
- 3. Let $f: \mathbf{R} \to \mathbf{R}$ be a continuous function with $\int_0^1 f(x) f'(x) dx = 0$ and $\int_0^1 f(x)^2 f'(x) dx = 18$. What is $\int_0^1 f(x)^4 f'(x) dx$?
- 4. Let $f: \mathbf{R} \to \mathbf{R}$ be a smooth function such that $f'(x)^2 = f(x)f''(x)$ for all x. Suppose f(0) = 1 and $f^{(4)}(0) = 9$. Find all possible values of f'(0).
- 5. Calculate

$$\lim_{x \to 0^+} \left(x^{x^x} - x^x \right).$$

- 6. The graph of $r = 2 + \cos 2\theta$ and its reflection over the line y = x bound five regions in the plane. Find the area of the region containing the origin.
- 7. Two ants, one starting at (-1,1), the other at (1,1), walk to the right along the parabola $y=x^2$ such that their midpoint moves along the line y=1 with constant speed 1. When the left ant first hits the line $y=\frac{1}{2}$, what is its speed?
- 8. If f is a continuous real function such that $f(x-1) + f(x+1) \ge x + f(x)$ for all x, what is the minimum possible value of $\int_1^{2005} f(x) dx$?
- 9. Compute

$$\sum_{k=0}^{\infty} \frac{4}{(4k)!}.$$

10. Let $f: \mathbf{R} \to \mathbf{R}$ be a smooth function such that f'(x) = f(1-x) for all x and f(0) = 1. Find f(1).

1