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Team Round A — Solutions

Disconnected Domino Rally [175]

On an infinite checkerboard, the union of any two distinct unit squares is called a (dis-
connected) domino. A domino is said to be of type (a, b), with a ≤ b integers not both zero,
if the centers of the two squares are separated by a distance of a in one orthogonal direction
and b in the other. (For instance, an ordinary connected domino is of type (0, 1), and a
domino of type (1, 2) contains two squares separated by a knight’s move.)

Each of the three pairs of squares above forms a domino of type (1, 2).

Two dominoes are said to be congruent if they are of the same type. A rectangle is said to
be (a, b)-tileable if it can be partitioned into dominoes of type (a, b).

1. [15] Prove that for any two types of dominoes, there exists a rectangle that can be
tiled by dominoes of either type.

Solution: Note that a type (a, b) domino tiles a max{1, 2a}×2b rectangle (see diagram
for a > 0). Then both type (a, b) and type (a′, b′) dominoes tile a (max{1, 2a} ·
max{1, 2a′})× (2b · 2b′) rectangle.

b b

a

a

2. [25] Suppose 0 < a ≤ b and 4 - mn. Prove that the number of ways in which an m×n
rectangle can be partitioned into dominoes of type (a, b) is even.

Solution: If the rectangle is tileable, it can be partitioned into an odd number of
dominoes. Consider the reflection of the partitioned rectangle over one axis. This
gives another partition of the rectangle. In fact, it cannot be the same partition, for
suppose it were. Then we can pair each domino with its reflected image, but since
there are an odd number of dominoes, one must reflect into itself. Since a > 0, this is
not possible. Therefore, we can pair off partitions and their reflections, and it follows
that the total number of partitions is even.
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3. [10] Show that no rectangle of the form 1× k or 2× n, where 4 - n, is (1, 2)-tileable.

Solution: The claim is obvious for 1×k rectangles. For the others, color the first two
columns black, the next two white, the next two black, etc. Each (1, 2) domino will
contain one square of each color, so in order to be tileable, the rectangle must contain
the same number of black and white squares. This is the case only when 4 | n.

4. [35] Show that all other rectangles of even area are (1, 2)-tileable.

Solution: First, we demonstrate that there exist (1, 2)-tilings of 2 × 4, 3 × 4, 3 × 6,
and 5× 6 rectangles.

Now, notice that by combining these rectangles, we can form any rectangle of even
area other than those described in the previous problem: using the first rectangle, we
can form any 2× n rectangle with 4 | n. By combining the first two, we can form any
m× 4 rectangle with m ≥ 2, and by combining the last three, we can form any m× 6
rectangle with m ≥ 3. From these, we can form any m× n rectangle with m ≥ 3 and
n even and greater than 2, completing the proof.

5. [25] Show that for b even, there exists some M such that for every n > M , a 2b × n
rectangle is (1, b)-tileable.

Solution: Recall from above that we can tile a 2 × 2b rectangle. Four columns of a
(b + 1) × 2b rectangle can be tiled as shown below, and repeating this b

2
times tiles

the entire rectangle. Since any integer at least b can be written as a positive linear
combination of 2 and b + 1, we can tile any 2b× n rectangle for n ≥ b.

6. [40] Show that for b even, there exists some M such that for every m,n > M with mn
even, an m× n rectangle is (1, b)-tileable.

Solution: By the diagram below, it is possible to tile a (2b + 2)× (4b + 1) rectangle.
Since we can already tile a (2b + 2)× 2b rectangle by above, and 2b is relatively prime
to 4b + 1, this will allow us to tile any (2b + 2) × n rectangle for n sufficiently large.
Combining this with the previous problem, this will allow us to tile any m×n rectangle
for m and n sufficiently large and m even, completing the proof.

To tile the (2b + 2)× (4b + 1) rectangle, we first tile the following piece:
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2b-1 2b

b+1

2

This is then combined with two 2×2b rectangles, a 2b× b rectangle, and a 2b× (2b+1)
rectangle as follows:

2 x 2b

2b x 2b+1

2 x 2b

2b x b

7. [25] Prove that neither of the previous two problems holds if b is odd.

Solution: Color the grid black and white in checkerboard fashion. Then if b is odd,
the two squares that make up a (1, b) domino always have the same color. Therefore,
for an m × n rectangle to be (1, b)-tileable, it must have an even number of squares
of each color. Then for any M , we can choose m and n larger than M such that n is
odd and 4 - m. A 2b× n rectangle and an m× n rectangle then contain bn and mn/2
squares of each color, respectively. Since both bn and mn/2 are odd, neither of these
rectangles is (1, b)-tileable.

An Interlude — Discovering One’s Roots [100]

A kth root of unity is any complex number ω such that ωk = 1. You may use the following
facts: if ω 6= 1, then

1 + ω + ω2 + · · ·+ ωk−1 = 0,

and if 1, ω, . . . , ωk−1 are distinct, then

(xk − 1) = (x− 1)(x− ω)(x− ω2) · · · (x− ωk−1).

8. [25] Suppose x is a fifth root of unity. Find, in radical form, all possible values of

2x +
1

1 + x
+

x

1 + x2
+

x2

1 + x3
+

x3

1 + x4
.
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Solution: Note that

x

1 + x2
+

x2

1 + x3
=

x6

1 + x2
+

x4

x2 + x5
=

x4 + x6

1 + x2
= x4 =

1

x
, and

1

1 + x
+

x3

1 + x4
=

x5

1 + x
+

x4

x + x5
=

x4 + x5

1 + x
= x4 =

1

x
.

Therefore, the sum is just 2x + 2
x
. If x = 1, this is 4. Otherwise, let y = x + 1

x
. Then

x satisfies

0 = 1 + x + x2 + x3 + x4 =

(
x2 +

1

x2
+ 2

)
+

(
x +

1

x

)
− 1 = y2 + y − 1,

so solving this quadratic yields y = −1±√5
2

, or 2y = −1±√5. Since each value of y can
correspond to only 2 possible values of x, and there are 4 possible values of x besides
1, both of these values for y are possible, which yields the answers, 4 and −1±√5.

9. [25] Let A1A2 . . . Ak be a regular k-gon inscribed in a circle of radius 1, and let P
be a point lying on or inside the circumcircle. Find the maximum possible value of
(PA1)(PA2) · · · (PAk).

Solution: Place the vertices at the kth roots of unity, 1, ω, . . . , ωk−1, and place P at
some complex number p. Then

((PA1)(PA2) · · · (PAk))
2 =

k−1∏
i=0

|p− ωi|2

= |pk − 1|2,
since xk − 1 = (x − 1)(x − ω) · · · (x − ωk−1). This is maximized when pk is as far as
possible from 1, which occurs when pk = −1. Therefore, the maximum possible value
of (PA1)(PA2) · · · (PAk) is 2.

10. [25] Let P be a regular k-gon inscribed in a circle of radius 1. Find the sum of the
squares of the lengths of all the sides and diagonals of P .

Solution: Place the vertices of P at the kth roots of unity, 1, ω, ω2, . . . , ωk−1 . We
will first calculate the sum of the squares of the lengths of the sides and diagonals that
contain the vertex 1. This is

k−1∑
i=0

|1− ωi|2 =
k−1∑
i=0

(1− ωi)(1− ω̄i)

=
k−1∑
i=0

(2− ωi − ω̄i)

= 2k − 2
k−1∑
i=0

ωi

= 2k,

using the fact that 1 + ω + · · · + ωk−1 = 0. Now, by symmetry, this is the sum of the
squares of the lengths of the sides and diagonals emanating from any vertex. Since
there are k vertices and each segment has two endpoints, the total sum is 2k ·k/2 = k2.
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11. [25] Let P (x) = anx
n + an−1x

n−1 + · · · + a0 be a polynomial with real coefficients,
an 6= 0. Suppose every root of P is a root of unity, but P (1) 6= 0. Show that the
coefficients of P are symmetric; that is, show that an = a0, an−1 = a1, . . .

Solution: Since the coefficients of P are real, the complex conjugates of the roots of
P are also roots of P . Now, if x is a root of unity, then x−1 = x̄. But the roots of

xnP (x−1) = a0x
n + a1x

n−1 + · · ·+ an

are then just the complex conjugates of the roots of P , so they are the roots of P .
Therefore, P (x) and xnP (x−1) differ by a constant multiple c. Since an = ca0 and
a0 = can, c is either 1 or −1. But if it were −1, then

P (1) = an + an−1 + · · ·+ a0 =
1

2
((an + a0) + (an−1 + a1) + · · ·+ (a0 + an)) = 0,

a contradiction. Therefore c = 1, giving the result.

Early Re-tile-ment [125]

Let S = {s0, . . . , sn} be a finite set of integers, and define S + k = {s0 + k, . . . , sn + k}. We
say that two sets S and T are equivalent, written S ∼ T , if T = S + k for some k. Given a
(possibly infinite) set of integers A, we say that S tiles A if A can be partitioned into subsets
equivalent to S. Such a partition is called a tiling of A by S.

12. [20] Suppose the elements of A are either bounded below or bounded above. Show
that if S tiles A, then it does so uniquely, i.e., there is a unique tiling of A by S.

Solution: Assume A is bounded below; the other case is analogous. In choosing
the tiling of A, note that there is a unique choice for the set S0 that contains the
minimum element of A. But then there is a unique choice for the set S1 that contains
the minimum element of A\S0. Continuing in this manner, there is a unique choice
for the set containing the minimum element not yet covered, so we see that the tiling
is uniquely determined.

13. [35] Let B be a set of integers either bounded below or bounded above. Then show
that if S tiles all other integers Z\B, then S tiles all integers Z.

Solution: Assume B is bounded above; the other case is analogous. Let a be the dif-
ference between the largest and smallest element of S. Denote the sets in the partition
of Z\B by Sk, k ∈ Z, such that the minimum element of Sk, which we will denote ck,
is strictly increasing as k increases. Since B is bounded above, there exists some k0

such that ck0 is larger than all the elements of B. Let

Tl =
∞⋃

k=l

Sk.

Suppose l ≥ k0. Note that any element in Sk, k < l, is at most cl − 1 + a. Therefore,
Tl contains all integers that are at least cl + a. Since the minimum element of Tl is
cl, Tl is completely determined by which of the integers cl + 1, cl + 2, . . . , cl + a− 1 it
contains. This implies that there are at most 2a−1 possible nonequivalent sets Tl when
l ≥ k0 (here we extend the notion of equivalence to infinite sets in the natural way.)
By the Pigeonhole Principle, there must then be some l2 > l1 ≥ k0 such that Tl1 ∼ Tl2 .
But then it is easy to see that the set Sl1 ∪ Sl1+1 ∪ · · · ∪ Sl2−1 tiles Z, so S tiles Z.
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14. [35] Suppose S tiles the natural numbers N. Show that S tiles the set {1, 2, . . . , k} for
some positive integer k.

Solution: Using the notation from above, we can find l1 < l2 such that Tl1 ∼ Tl2 . By
the same argument as in problem 12, as long as Tl1 6= N, there is a unique choice for
Sl1−1 that contains the largest integer not in Tl1 . Since the same can be said for Tl2 ,
we must have that Tl1−1 ∼ Tl2−1. Continuing in this manner, we find that there must
exist some l for which N ∼ Tl; then S tiles N\Tl = {1, 2, · · · , cl − 1}.

15. [35] Suppose S tiles N. Show that S is symmetric; that is, if −S = {−sn, . . . ,−s0},
show that S ∼ −S.

Solution: Assume without loss of generality that the minimum element of S is 0. By
the previous problem, S tiles the set {1, 2, . . . , k} for some positive integer k. Then let
P (x) be the polynomial

∑n
i=0 xsi . To say that the set {1, 2, . . . , k}, or equivalently the

set {0, 1, . . . , k − 1}, is tiled by S is to say that there is some polynomial Q(x) with
coefficients 0 or 1 such that P (x)Q(x) = 1+x+ · · ·+xk−1 = (xk−1)/(x−1). It follows
that all the roots of P (x) are roots of unity, but P (1) 6= 0. By question 11 above, this
implies that P (x) is symmetric. Therefore, s0 + sn = s1 + sn−1 = · · · = sn + s0, so S
is symmetric.
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