13thAnnual Harvard-MIT Mathematics Tournament

Saturday 20 February 2010

Algebra Subject Test

1. [3] Suppose that x and y are positive reals such that

$$x - y^2 = 3$$
, $x^2 + y^4 = 13$.

Find x.

Answer: $3+\sqrt{17}$ Squaring both sides of $x-y^2=3$ gives $x^2+y^4-2xy^2=9$. Subtract this equation from twice the second given to get $x^2+2xy^2+y^4=17 \implies x+y^2=\pm 17$. Combining this equation with the first given, we see that $x=\frac{3\pm\sqrt{17}}{2}$. Since x is a positive real, x must be $\frac{3+\sqrt{17}}{2}$.

2. [3] The rank of a rational number q is the unique k for which $q=\frac{1}{a_1}+\cdots+\frac{1}{a_k}$, where each a_i is the smallest positive integer such that $q\geq \frac{1}{a_1}+\cdots+\frac{1}{a_i}$. Let q be the largest rational number less than $\frac{1}{4}$ with rank 3, and suppose the expression for q is $\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}$. Find the ordered triple (a_1,a_2,a_3) .

Answer: (5,21,421) Suppose that A and B were rational numbers of rank 3 less than $\frac{1}{4}$, and let a_1,a_2,a_3,b_1,b_2,b_3 be positive integers so that $A=\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}$ and $B=\frac{1}{b_1}+\frac{1}{b_2}+\frac{1}{b_3}$ are the expressions for A and B as stated in the problem. If $b_1 < a_1$ then $A < \frac{1}{a_1-1} \le \frac{1}{b_1} < B$. In other words, of all the rationals less than $\frac{1}{4}$ with rank 3, those that have $a_1=5$ are greater than those that have $a_1=6,7,8,\ldots$ Therefore we can "build" q greedily, adding the largest unit fraction that keeps q less than $\frac{1}{4}$:

 $\frac{1}{5}$ is the largest unit fraction less than $\frac{1}{4}$, hence $a_1 = 5$; $\frac{1}{21}$ is the largest unit fraction less than $\frac{1}{4} - \frac{1}{5}$, hence $a_2 = 21$; $\frac{1}{421}$ is the largest unit fraction less than $\frac{1}{4} - \frac{1}{5} - \frac{1}{21}$, hence $a_3 = 421$.

3. [4] Let $S_0 = 0$ and let S_k equal $a_1 + 2a_2 + \ldots + ka_k$ for $k \ge 1$. Define a_i to be 1 if $S_{i-1} < i$ and -1 if $S_{i-1} \ge i$. What is the largest $k \le 2010$ such that $S_k = 0$?

Answer: 1092 Suppose that $S_N = 0$ for some $N \ge 0$. Then $a_{N+1} = 1$ because $N + 1 \ge S_N$. The following table lists the values of a_k and S_k for a few $k \ge N$:

k	a_k	S_k
\overline{N}		0
N+1	1	N+1
N+2	1	2N + 3
N+3	-1	N
N+4	1	2N + 4
N+5	-1	N-1
N+6	1	2N + 5
N+7	-1	N-2

We see inductively that, for every $i \geq 1$,

$$S_{N+2i} = 2N + 2 + i$$

and

$$S_{N+1+2i} = N+1-i$$

thus $S_{3N+3} = 0$ is the next k for which $S_k = 0$. The values of k for which $S_k = 0$ satisfy the recurrence relation $p_{n+1} = 3p_n + 3$, and we compute that the first terms of the sequence are 0, 3, 12, 39, 120, 363, 1092; hence 1092 is our answer.

4. [4] Suppose that there exist nonzero complex numbers a, b, c, and d such that k is a root of both the equations $ax^3 + bx^2 + cx + d = 0$ and $bx^3 + cx^2 + dx + a = 0$. Find all possible values of k (including complex values).

Answer: 1,-1,i,-i Let k be a root of both polynomials. Multiplying the first polynomial by k and subtracting the second, we have $ak^4 - a = 0$, which means that k is either 1, -1, i, or -i. If a = b = c = d = 1, then -1, i, and -i are roots of both polynomials. If a = b = c = 1 and d = -3, then 1 is a root of both polynomials. So k can be 1, -1, i, and -i.

5. [5] Suppose that x and y are complex numbers such that x + y = 1 and that $x^{20} + y^{20} = 20$. Find the sum of all possible values of $x^2 + y^2$.

Answer: $\boxed{-90}$ We have $x^2+y^2+2xy=1$. Define a=2xy and $b=x^2+y^2$ for convenience. Then a+b=1 and $b-a=x^2+y^2-2xy=(x-y)^2=2b-1$ so that $x,y=\frac{\sqrt{2b-1}\pm 1}{2}$. Then

$$x^{20} + y^{20} = \left(\frac{\sqrt{2b-1}+1}{2}\right)^{20} + \left(\frac{\sqrt{2b-1}-1}{2}\right)^{20}$$

$$= \frac{1}{2^{20}} \left[(\sqrt{2b-1}+1)^{20} + (\sqrt{2b-1}-1)^{20} \right]$$

$$= \frac{2}{2^{20}} \left[(\sqrt{2b-1})^{20} + \binom{20}{2} (\sqrt{2b-1})^{18} + \binom{20}{4} (\sqrt{2b-1})^{16} + \dots \right]$$

$$= \frac{2}{2^{20}} \left[(2b-1)^{10} + \binom{20}{2} (2b-1)^9 + \binom{20}{4} (2b-1)^8 + \dots \right]$$

$$= 20$$

We want to find the sum of distinct roots of the above polynomial in b; we first prove that the original polynomial is square-free. The conditions x+y=1 and $x^{20}+y^{20}=20$ imply that $x^{20}+(1-x)^{20}-20=0$; let $p(x)=x^{20}+(1-x)^{20}-20$. p is square-free if and only if GCD(p,p')=c for some constant c:

$$\begin{split} GCD(p,p') &= GCD(x^{20} + (1-x)^{20} - 20, 20(x^{19} - (1-x)^{19})) \\ &= GCD(x^{20} - x(1-x)^{19} + (1-x)^{19} - 20, 20(x^{19} - (1-x)^{19})) \\ &= GCD((1-x)^{19} - 20, x^{19} - (1-x)^{19}) \\ &= GCD((1-x)^{19} - 20, x^{19} - 20) \end{split}$$

The roots of $x^{19}-20$ are $\sqrt[19]{20^k} \exp(\frac{2\pi i k}{19})$ for some $k=0,1,\ldots,18$; the roots of $(1-x)^{19}-20$ are $1-\sqrt[19]{20^k} \exp(\frac{2\pi i k}{19})$ for some $k=0,1,\ldots,18$. If $x^{19}-20$ and $(1-x)^{19}-20$ share a common root, then there exist integers m,n such that $\sqrt[19]{20^m} \exp(\frac{2\pi i m}{19})=1-\sqrt[19]{20^m} \exp(\frac{2\pi i m}{19})$; since the imaginary parts of both sides must be the same, we have m=n and $\sqrt[19]{20^m} \exp(\frac{2\pi i m}{19})=\frac{1}{2} \implies 20^m=\frac{1}{2^{19}}$, a contradiction. Thus we have proved that the polynomial in x has no double roots. Since for each x0 there exists a unique pair x1, x2, x3 (up to permutations) that satisfies x3 + x4 = x5 and x6 and x7 = x8.

Let the coefficient of b^n in the above equation be $[b^n]$. By Vieta's Formulas, the sum of all possible values of $b = x^2 + y^2$ is equal to $-\frac{[b^9]}{[b^{10}]}$. $[b^{10}] = \frac{2}{2^{20}} \left(2^{10}\right)$ and $[b^9] = \frac{2}{2^{20}} \left(-\binom{10}{1}2^9 + \binom{20}{2}2^9\right)$; thus $-\frac{[b^9]}{[b^{10}]} = -\frac{\binom{10}{1}2^9 - \binom{20}{2}2^9}{2^{10}} = -90$.

6. [5] Suppose that a polynomial of the form $p(x) = x^{2010} \pm x^{2009} \pm \cdots \pm x \pm 1$ has no real roots. What is the maximum possible number of coefficients of -1 in p?

Answer: 1005 Let p(x) be a polynomial with the maximum number of minus signs. p(x) cannot have more than 1005 minus signs, otherwise p(1) < 0 and $p(2) \ge 2^{2010} - 2^{2009} - \ldots - 2 - 1 = 1$, which implies, by the Intermediate Value Theorem, that p must have a root greater than 1. Let $p(x) = \frac{x^{2011} + 1}{x + 1} = x^{2010} - x^{2009} + x^{2008} - \ldots - x + 1$. -1 is the only real root of $x^{2011} + 1 = 0$ but

p(-1) = 2011; therefore p has no real roots. Since p has 1005 minus signs, it is the desired polynomial.

7. [5] Let a, b, c, x, y, and z be complex numbers such that

$$a = \frac{b+c}{x-2}, \quad b = \frac{c+a}{y-2}, \quad c = \frac{a+b}{z-2}.$$

If xy + yz + zx = 67 and x + y + z = 2010, find the value of xyz.

Answer: [-5892] Manipulate the equations to get a common denominator: $a = \frac{b+c}{x-2} \implies x-2 = \frac{b+c}{a} \implies x-1 = \frac{a+b+c}{a} \implies \frac{1}{x-1} = \frac{a}{a+b+c}$; similarly, $\frac{1}{y-1} = \frac{b}{a+b+c}$ and $\frac{1}{z-1} = \frac{c}{a+b+c}$. Thus

$$\frac{1}{x-1} + \frac{1}{y-1} + \frac{1}{z-1} = 1$$

$$(y-1)(z-1) + (x-1)(z-1) + (x-1)(y-1) = (x-1)(y-1)(z-1)$$

$$xy + yz + zx - 2(x+y+z) + 3 = xyz - (xy+yz+zx) + (x+y+z) - 1$$

$$xyz - 2(xy+yz+zx) + 3(x+y+z) - 4 = 0$$

$$xyz - 2(67) + 3(2010) - 4 = 0$$

$$xyz = -5892$$

8. [6] How many polynomials of degree exactly 5 with real coefficients send the set $\{1, 2, 3, 4, 5, 6\}$ to a permutation of itself?

Answer: $\lfloor 714 \rfloor$ For every permutation σ of $\{1,2,3,4,5,6\}$, Lagrange Interpolation gives a polynomial of degree at most 5 with $p(x) = \sigma(x)$ for every x = 1,2,3,4,5,6. Additionally, this polynomial is unique: assume that there exist two polynomials p,q of degree ≤ 5 such that they map $\{1,2,3,4,5,6\}$ to the same permutation. Then p-q is a nonzero polynomial of degree ≤ 5 with 6 distinct roots, a contradiction. Thus an upper bound for the answer is 6! = 720 polynomials.

However, not every polynomial obtained by Lagrange interpolation is of degree 5 (for example, p(x)=x). We can count the number of invalid polynomials using finite differences.² A polynomial has degree less than 5 if and only if the sequence of 5th finite differences is 0. The 5th finite difference of p(1), p(2), p(3), p(4), p(5), p(6) is p(1) - 5p(2) + 10p(3) - 10p(4) + 5p(5) - p(6); thus we want to solve p(1) - 5p(2) + 10p(3) - 10p(4) + 5p(5) - p(6) = 0 with $\{p(1), p(2), p(3), p(4), p(5), p(6)\} = \{1, 2, 3, 4, 5, 6\}$. Taking the above equation modulo 5, we get $p(1) = p(6) \pmod{5} \implies \{p(1), p(6)\} = \{1, 6\}$. Note that 1 - 5p(2) + 10p(3) - 10p(4) + 5p(5) - 6 = 0 if and only if 6 - 5p(5) + 10p(4) - 10p(3) + 5p(2) - 1 = 0, so we may assume that p(1) = 1 and double our result later. Then we have $\{p(2), p(3), p(4), p(5)\} = \{2, 3, 4, 5\}$ and

$$-p(2) + 2p(3) - 2p(4) + p(5) = 1.$$

The above equation taken modulo 2 implies that p(2), p(5) are of opposite parity, so p(3), p(4) are of opposite parity. We do casework on $\{p(2), p(5)\}$:

- (a) p(2) = 2, p(5) = 3; 2p(3) 2p(4) = 0 is a contradiction
- (b) $p(2) = 2, p(5) = 5; 2p(3) 2p(4) = -2 \implies p(3) p(4) = -1 \implies p(3) = 3, p(4) = 4$
- (c) $p(2) = 3, p(5) = 2; 2p(3) 2p(4) = -2 \implies p(3) p(4) = -1 \implies p(3) = 4, p(4) = 5$
- (d) p(2) = 3, p(5) = 4; 2p(3) 2p(4) = 0 is a contradiction
- (e) $p(2) = 4, p(5) = 3; 2p(3) 2p(4) = 2 \implies p(3) p(4) = 1 \text{ but } \{p(3), p(4)\} = \{2, 5\}, \text{ contradiction } \{p(3), p(4)\} = \{2, 5\}, \{p(3), p(4)\} = \{p(4), p(4)\} = \{p($
- (f) p(2) = 4, p(5) = 5; 2p(3) 2p(4) = 0 is a contradiction
- (g) $p(2) = 5, p(5) = 2; 2p(3) 2p(4) = 4 \implies p(3) p(4) = 2$, contradiction
- (h) $p(2) = 5, p(5) = 4; 2p(3) 2p(4) = 2 \implies p(3) p(4) = 1 \implies p(3) = 3, p(4) = 2$

Hence there are a total of 720 - 2(3) = 714 polynomials.

 $^{^{1}} See \ \mathtt{http://en.wikipedia.org/wiki/Lagrange_interpolation}.$

²See http://www.artofproblemsolving.com/Forum/weblog_entry.php?p=1263378.

9. [7] Let f(x) = cx(x-1), where c is a positive real number. We use $f^n(x)$ to denote the polynomial obtained by composing f with itself n times. For every positive integer n, all the roots of $f^n(x)$ are real. What is the smallest possible value of c?

Answer: 2 We first prove that all roots of $f^n(x)$ are greater than or equal to $-\frac{c}{4}$ and less than or equal to $1+\frac{c}{4}$. Suppose that r is a root of $f^n(x)$. If $r=-\frac{c}{4}$, $f^{-1}(r)=\{\frac{1}{2}\}$ and $-\frac{c}{4}<\frac{1}{2}<1+\frac{c}{4}$ since c is positive. Suppose $r\neq -\frac{c}{4}$; by the quadratic formula, there exist two complex numbers r_1, r_2 such that $r_1+r_2=1$ and $f(r_1)=f(r_2)=r$. Thus all the roots of $f^n(x)$ (except $\frac{1}{2}$) come in pairs that sum to 1. No root r of $f^n(x)$ can be less than $-\frac{c}{4}$, otherwise $f^{n+1}(x)$ has an imaginary root, $f^{-1}(r)$. Also, no root r of $f^n(x)$ can be greater than $1+\frac{c}{4}$, otherwise its "conjugate" root will be less than $-\frac{c}{4}$.

Define $g(x) = \frac{1}{2} \left(1 + \sqrt{1 + \frac{4x}{c}} \right)$, the larger inverse of f(x). Note that $g^n(x)$ is the largest element of $f^{-n}(x)$ (which is a set). $g^n(0)$ should be less than or equal to $1 + \frac{c}{4}$ for all n. Let x_0 be the nonzero real number such that $g(x_0) = x_0$; then $cx_0(x_0 - 1) = x_0 \implies x_0 = 1 + \frac{1}{c}$. $x_0 < g(x) < x$ if $x > x_0$ and $x < g(x) < x_0$ if $x < x_0$; it can be proved that g^n converges to g^n . Hence we have the requirement that $g^n = 1 + \frac{1}{c} \le 1 + \frac{c}{4} \implies c \ge 2$.

We verify that c=2 is possible. All the roots of $f^-n(x)$ will be real if $g(0) \le 1 + \frac{c}{4} = \frac{3}{2}$. We know that $0 < \frac{3}{2} \implies g(0) < \frac{3}{2}$, so $g^2(0) < \frac{3}{2}$ and $g^n(0) < g^{n+1}(0) < \frac{3}{2}$ for all n. Therefore all the roots of $f^n(x)$ are real.

10. [8] Let p(x) and q(x) be two cubic polynomials such that p(0) = -24, q(0) = 30, and

$$p(q(x)) = q(p(x))$$

for all real numbers x. Find the ordered pair (p(3), q(6)).

Answer: (3,-24) Note that the polynomials $f(x) = ax^3$ and $g(x) = -ax^3$ commute under composition. Let h(x) = x + b be a linear polynomial, and note that its inverse $h^{-1}(x) = x - b$ is also a linear polynomial. The composite polynomials $h^{-1}fh$ and $h^{-1}gh$ commute, since function composition is associative, and these polynomials are also cubic.

We solve for the a and b such that $(h^{-1}fh)(0) = -24$ and $(h^{-1}gh)(0) = 30$. We must have:

$$ab^3 - b = -24, -ab^3 - b = 30 \Rightarrow a = 1, b = -3$$

These values of a and b yield the polynomials $p(x) = (x-3)^3 + 3$ and $q(x) = -(x-3)^3 + 3$. The polynomials take on the values p(3) = 3 and q(6) = -24.

Remark: The pair of polynomials found in the solution is not unique. There is, in fact, an entire family of commuting cubic polynomials with p(0) = -24 and q(0) = 30. They are of the form

$$p(x) = tx(x-3)(x-6) - 24, \ q(x) = -tx(x-3)(x-6) + 30$$

where t is any real number. However, the values of p(3) and q(6) are the same for all polynomials in this family. In fact, if we give the initial conditions $p(0) = k_1$ and $q(0) = k_2$, then we get a general solution of

$$p(x) = t\left(x^3 - \frac{3}{2}(k_1 + k_2)x^2 + \frac{1}{2}(k_1 + k_2)^2x\right) + \frac{k_2 - k_1}{k_2 + k_1}x + k_1$$
$$q(x) = -t\left(x^3 - \frac{3}{2}(k_1 + k_2)x^2 + \frac{1}{2}(k_1 + k_2)^2x\right) - \frac{k_2 - k_1}{k_2 + k_1}x + k_2.$$