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Algebra Subject Test

1. [3] Suppose that x and y are positive reals such that

x− y2 = 3, x2 + y4 = 13.

Find x.

Answer: 3+
√

17
2 Squaring both sides of x− y2 = 3 gives x2 + y4− 2xy2 = 9. Subtract this equation

from twice the second given to get x2 + 2xy2 + y4 = 17 =⇒ x+ y2 = ±17. Combining this equation
with the first given, we see that x = 3±

√
17

2 . Since x is a positive real, x must be 3+
√

17
2 .

2. [3] The rank of a rational number q is the unique k for which q = 1
a1

+ · · ·+ 1
ak

, where each ai is the
smallest positive integer such that q ≥ 1

a1
+ · · ·+ 1

ai
. Let q be the largest rational number less than 1

4

with rank 3, and suppose the expression for q is 1
a1

+ 1
a2

+ 1
a3

. Find the ordered triple (a1, a2, a3).

Answer: (5, 21, 421) Suppose that A and B were rational numbers of rank 3 less than 1
4 , and

let a1, a2, a3, b1, b2, b3 be positive integers so that A = 1
a1

+ 1
a2

+ 1
a3

and B = 1
b1

+ 1
b2

+ 1
b3

are the
expressions for A and B as stated in the problem. If b1 < a1 then A < 1

a1−1 ≤
1
b1
< B. In other words,

of all the rationals less than 1
4 with rank 3, those that have a1 = 5 are greater than those that have

a1 = 6, 7, 8, . . . Therefore we can “build” q greedily, adding the largest unit fraction that keeps q less
than 1

4 :
1
5 is the largest unit fraction less than 1

4 , hence a1 = 5;
1
21 is the largest unit fraction less than 1

4 −
1
5 , hence a2 = 21;

1
421 is the largest unit fraction less than 1

4 −
1
5 −

1
21 , hence a3 = 421.

3. [4] Let S0 = 0 and let Sk equal a1 + 2a2 + . . .+ kak for k ≥ 1. Define ai to be 1 if Si−1 < i and -1 if
Si−1 ≥ i. What is the largest k ≤ 2010 such that Sk = 0?

Answer: 1092 Suppose that SN = 0 for some N ≥ 0. Then aN+1 = 1 because N + 1 ≥ SN . The
following table lists the values of ak and Sk for a few k ≥ N :

k ak Sk
N 0
N + 1 1 N + 1
N + 2 1 2N + 3
N + 3 −1 N
N + 4 1 2N + 4
N + 5 −1 N − 1
N + 6 1 2N + 5
N + 7 −1 N − 2

We see inductively that, for every i ≥ 1,

SN+2i = 2N + 2 + i

and
SN+1+2i = N + 1− i

thus S3N+3 = 0 is the next k for which Sk = 0. The values of k for which Sk = 0 satisfy the recurrence
relation pn+1 = 3pn+3, and we compute that the first terms of the sequence are 0, 3, 12, 39, 120, 363, 1092;
hence 1092 is our answer.
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4. [4] Suppose that there exist nonzero complex numbers a, b, c, and d such that k is a root of both the
equations ax3 + bx2 + cx+ d = 0 and bx3 + cx2 + dx+ a = 0. Find all possible values of k (including
complex values).

Answer: 1,−1,i,−i Let k be a root of both polynomials. Multiplying the first polynomial by k

and subtracting the second, we have ak4 − a = 0, which means that k is either 1, −1, i, or −i. If
a = b = c = d = 1, then −1, i, and −i are roots of both polynomials. If a = b = c = 1 and d = −3,
then 1 is a root of both polynomials. So k can be 1, −1, i, and −i.

5. [5] Suppose that x and y are complex numbers such that x+ y = 1 and that x20 + y20 = 20. Find the
sum of all possible values of x2 + y2.

Answer: −90 We have x2 + y2 + 2xy = 1. Define a = 2xy and b = x2 + y2 for convenience. Then

a+ b = 1 and b− a = x2 + y2 − 2xy = (x− y)2 = 2b− 1 so that x, y =
√

2b−1±1
2 . Then

x20 + y20 =
(√

2b− 1 + 1
2

)20

+
(√

2b− 1− 1
2

)20

=
1

220
[(
√

2b− 1 + 1)20 + (
√

2b− 1− 1)20]

=
2

220

[
(
√

2b− 1)20 +
(

20
2

)
(
√

2b− 1)18 +
(

20
4

)
(
√

2b− 1)16 + . . .

]
=

2
220

[
(2b− 1)10 +

(
20
2

)
(2b− 1)9 +

(
20
4

)
(2b− 1)8 + . . .

]
= 20

We want to find the sum of distinct roots of the above polynomial in b; we first prove that the original
polynomial is square-free. The conditions x+y = 1 and x20+y20 = 20 imply that x20+(1−x)20−20 = 0;
let p(x) = x20 + (1− x)20 − 20. p is square-free if and only if GCD(p, p′) = c for some constant c:

GCD(p, p′) = GCD(x20 + (1− x)20 − 20, 20(x19 − (1− x)19))
= GCD(x20 − x(1− x)19 + (1− x)19 − 20, 20(x19 − (1− x)19))
= GCD((1− x)19 − 20, x19 − (1− x)19)
= GCD((1− x)19 − 20, x19 − 20)

The roots of x19 − 20 are 19
√

20k exp( 2πik
19 ) for some k = 0, 1, . . . , 18; the roots of (1 − x)19 − 20 are

1 − 19
√

20k exp( 2πik
19 ) for some k = 0, 1, . . . , 18. If x19 − 20 and (1 − x)19 − 20 share a common root,

then there exist integers m,n such that 19
√

20m exp( 2πim
19 ) = 1− 19

√
20n exp( 2πin

19 ); since the imaginary
parts of both sides must be the same, we have m = n and 19

√
20m exp( 2πim

19 ) = 1
2 =⇒ 20m = 1

219 , a
contradiction. Thus we have proved that the polynomial in x has no double roots. Since for each b
there exists a unique pair (x, y) (up to permutations) that satisfies x2 + y2 = b and (x+ y)2 = 1, the
polynomial in b has no double roots.

Let the coefficient of bn in the above equation be [bn]. By Vieta’s Formulas, the sum of all possible
values of b = x2 + y2 is equal to − [b9]

[b10] . [b10] = 2
220

(
210
)

and [b9] = 2
220

(
−
(
10
1

)
29 +

(
20
2

)
29
)
; thus

− [b9]
[b10] = − (10

1 )29−(20
2 )29

210 = −90.

6. [5] Suppose that a polynomial of the form p(x) = x2010 ± x2009 ± · · · ± x± 1 has no real roots. What
is the maximum possible number of coefficients of −1 in p?

Answer: 1005 Let p(x) be a polynomial with the maximum number of minus signs.
p(x) cannot have more than 1005 minus signs, otherwise p(1) < 0 and p(2) ≥ 22010−22009−. . .−2−1 =
1, which implies, by the Intermediate Value Theorem, that p must have a root greater than 1.

Let p(x) =
x2011 + 1
x+ 1

= x2010−x2009 +x2008− . . .−x+ 1. −1 is the only real root of x2011 + 1 = 0 but

p(−1) = 2011; therefore p has no real roots. Since p has 1005 minus signs, it is the desired polynomial.
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7. [5] Let a, b, c, x, y, and z be complex numbers such that

a =
b+ c

x− 2
, b =

c+ a

y − 2
, c =

a+ b

z − 2
.

If xy + yz + zx = 67 and x+ y + z = 2010, find the value of xyz.

Answer: −5892 Manipulate the equations to get a common denominator: a = b+c
x−2 =⇒ x − 2 =

b+c
a =⇒ x− 1 = a+b+c

a =⇒ 1
x−1 = a

a+b+c ; similarly, 1
y−1 = b

a+b+c and 1
z−1 = c

a+b+c . Thus

1
x− 1

+
1

y − 1
+

1
z − 1

= 1

(y − 1)(z − 1) + (x− 1)(z − 1) + (x− 1)(y − 1) = (x− 1)(y − 1)(z − 1)
xy + yz + zx− 2(x+ y + z) + 3 = xyz − (xy + yz + zx) + (x+ y + z)− 1

xyz − 2(xy + yz + zx) + 3(x+ y + z)− 4 = 0
xyz − 2(67) + 3(2010)− 4 = 0

xyz = −5892

8. [6] How many polynomials of degree exactly 5 with real coefficients send the set {1, 2, 3, 4, 5, 6} to a
permutation of itself?

Answer: 714 For every permutation σ of {1, 2, 3, 4, 5, 6}, Lagrange Interpolation1 gives a polynomial
of degree at most 5 with p(x) = σ(x) for every x = 1, 2, 3, 4, 5, 6. Additionally, this polynomial is
unique: assume that there exist two polynomials p, q of degree ≤ 5 such that they map {1, 2, 3, 4, 5, 6}
to the same permutation. Then p − q is a nonzero polynomial of degree ≤ 5 with 6 distinct roots, a
contradiction. Thus an upper bound for the answer is 6! = 720 polynomials.

However, not every polynomial obtained by Lagrange interpolation is of degree 5 (for example, p(x) =
x). We can count the number of invalid polynomials using finite differences.2 A polynomial has
degree less than 5 if and only if the sequence of 5th finite differences is 0. The 5th finite difference of
p(1), p(2), p(3), p(4), p(5), p(6) is p(1) − 5p(2) + 10p(3) − 10p(4) + 5p(5) − p(6); thus we want to solve
p(1)−5p(2)+10p(3)−10p(4)+5p(5)−p(6) = 0 with {p(1), p(2), p(3), p(4), p(5), p(6)} = {1, 2, 3, 4, 5, 6}.
Taking the above equation modulo 5, we get p(1) = p(6) (mod 5) =⇒ {p(1), p(6)} = {1, 6}. Note that
1−5p(2)+10p(3)−10p(4)+5p(5)−6 = 0 if and only if 6−5p(5)+10p(4)−10p(3)+5p(2)−1 = 0, so we may
assume that p(1) = 1 and double our result later. Then we have {p(2), p(3), p(4), p(5)} = {2, 3, 4, 5}
and

−p(2) + 2p(3)− 2p(4) + p(5) = 1.

The above equation taken modulo 2 implies that p(2), p(5) are of opposite parity, so p(3), p(4) are of
opposite parity. We do casework on {p(2), p(5)}:

(a) p(2) = 2, p(5) = 3; 2p(3)− 2p(4) = 0 is a contradiction

(b) p(2) = 2, p(5) = 5; 2p(3)− 2p(4) = −2 =⇒ p(3)− p(4) = −1 =⇒ p(3) = 3, p(4) = 4

(c) p(2) = 3, p(5) = 2; 2p(3)− 2p(4) = −2 =⇒ p(3)− p(4) = −1 =⇒ p(3) = 4, p(4) = 5

(d) p(2) = 3, p(5) = 4; 2p(3)− 2p(4) = 0 is a contradiction

(e) p(2) = 4, p(5) = 3; 2p(3)− 2p(4) = 2 =⇒ p(3)− p(4) = 1 but {p(3), p(4)} = {2, 5}, contradiction

(f) p(2) = 4, p(5) = 5; 2p(3)− 2p(4) = 0 is a contradiction

(g) p(2) = 5, p(5) = 2; 2p(3)− 2p(4) = 4 =⇒ p(3)− p(4) = 2, contradiction

(h) p(2) = 5, p(5) = 4; 2p(3)− 2p(4) = 2 =⇒ p(3)− p(4) = 1 =⇒ p(3) = 3, p(4) = 2

Hence there are a total of 720− 2(3) = 714 polynomials.

1See http://en.wikipedia.org/wiki/Lagrange_interpolation.
2See http://www.artofproblemsolving.com/Forum/weblog_entry.php?p=1263378.
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9. [7] Let f(x) = cx(x − 1), where c is a positive real number. We use fn(x) to denote the polynomial
obtained by composing f with itself n times. For every positive integer n, all the roots of fn(x) are
real. What is the smallest possible value of c?

Answer: 2 We first prove that all roots of fn(x) are greater than or equal to − c
4 and less than or

equal to 1 + c
4 . Suppose that r is a root of fn(x). If r = − c

4 , f−1(r) = { 1
2} and − c

4 <
1
2 < 1 + c

4 since
c is positive. Suppose r 6= − c

4 ; by the quadratic formula, there exist two complex numbers r1, r2 such
that r1 + r2 = 1 and f(r1) = f(r2) = r. Thus all the roots of fn(x) (except 1

2 ) come in pairs that sum
to 1. No root r of fn(x) can be less than − c

4 , otherwise fn+1(x) has an imaginary root, f−1(r). Also,
no root r of fn(x) can be greater than 1 + c

4 , otherwise its “conjugate” root will be less than − c
4 .

Define g(x) = 1
2

(
1 +

√
1 + 4x

c

)
, the larger inverse of f(x). Note that gn(x) is the largest element of

f−n(x) (which is a set). gn(0) should be less than or equal to 1 + c
4 for all n. Let x0 be the nonzero

real number such that g(x0) = x0; then cx0(x0 − 1) = x0 =⇒ xo = 1 + 1
c . x0 < g(x) < x if x > x0

and x < g(x) < x0 if x < x0; it can be proved that gn converges to x0. Hence we have the requirement
that x0 = 1 + 1

c ≤ 1 + c
4 =⇒ c ≥ 2.

We verify that c = 2 is possible. All the roots of f−n(x) will be real if g(0) ≤ 1 + c
4 = 3

2 . We know
that 0 < 3

2 =⇒ g(0) < 3
2 , so g2(0) < 3

2 and gn(0) < gn+1(0) < 3
2 for all n. Therefore all the roots of

fn(x) are real.

10. [8] Let p(x) and q(x) be two cubic polynomials such that p(0) = −24, q(0) = 30, and

p(q(x)) = q(p(x))

for all real numbers x. Find the ordered pair (p(3), q(6)).

Answer: (3,−24) Note that the polynomials f(x) = ax3 and g(x) = −ax3 commute under com-
position. Let h(x) = x + b be a linear polynomial, and note that its inverse h−1(x) = x − b is also a
linear polynomial. The composite polynomials h−1fh and h−1gh commute, since function composition
is associative, and these polynomials are also cubic.

We solve for the a and b such that (h−1fh)(0) = −24 and (h−1gh)(0) = 30. We must have:

ab3 − b = −24, −ab3 − b = 30⇒ a = 1, b = −3

These values of a and b yield the polynomials p(x) = (x − 3)3 + 3 and q(x) = −(x − 3)3 + 3. The
polynomials take on the values p(3) = 3 and q(6) = −24.

Remark: The pair of polynomials found in the solution is not unique. There is, in fact, an entire
family of commuting cubic polynomials with p(0) = −24 and q(0) = 30. They are of the form

p(x) = tx(x− 3)(x− 6)− 24, q(x) = −tx(x− 3)(x− 6) + 30

where t is any real number. However, the values of p(3) and q(6) are the same for all polynomials in
this family. In fact, if we give the initial conditions p(0) = k1 and q(0) = k2, then we get a general
solution of

p(x) = t

(
x3 − 3

2
(k1 + k2)x2 +

1
2

(k1 + k2)2 x
)

+
k2 − k1

k2 + k1
x+ k1

q (x) = −t
(
x3 − 3

2
(k1 + k2)x2 +

1
2

(k1 + k2)2 x
)
− k2 − k1

k2 + k1
x+ k2.
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