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Algebra Subject Test

1. [3] Suppose that = and y are positive reals such that

r—y? =3 22+y*=13.

Find x.
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Answer: Squaring both sides of  — y? = 3 gives x2 4+ y* — 2zy? = 9. Subtract this equation

from twice the second given to get z2 + 2zy? +y* = 17 = =z + 3% = +17. Combining this equation

with the first given, we see that z = L;/ﬁ Since x is a positive real, x must be %ﬁ

2. [3] The rank of a rational number ¢ is the unique k for which ¢ = (Tll + ot i, where each a; is the
smallest positive integer such that ¢ > alT 4+ ai Let g be the largest rational number less than i
with rank 3, and suppose the expression for ¢ is lel + ?12 + ?13 Find the ordered triple (ay, as, a3).

1
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let aq,as,as, by, by, bs be positive integers so that A = i + é + i and B = % + é + é are the

Answer: |(5,21,421)| Suppose that A and B were rational numbers of rank 3 less than and

expressions for A and B as stated in the problem. If b < a7 then A < ﬁ < ﬁ < B. In other words,

of all the rationals less than % with rank 3, those that have a; = 5 are greater than those that have

a; = 6,7,8,... Therefore we can “build” ¢ greedily, adding the largest unit fraction that keeps ¢ less
than i:
L is the largest unit fraction less than %, hence a; = 5;

5
2—1% is the largest unit fraction less than i — %7 hence ay = 21;
o7 18 the largest unit fraction less than i - % — 2%, hence a3 = 421.

3. [4] Let Sy = 0 and let Sk equal a1 + 2as + ... + kay, for k > 1. Define a; to be 1 if S;_; < ¢ and -1 if
S;—1 > 1. What is the largest £ < 2010 such that S, = 07

Answer: |1092| Suppose that Sy = 0 for some N > 0. Then ay+1 = 1 because N +1 > Sy. The
following table lists the values of ay and Sy for a few k > N:

k ag Sk
N 0
N+1 1 N+1
N +2 1 2N 43
N+3 -1 N
N +4 1 2N +4
N+5 -1 N-1
N +6 1 2N +5
N+7 -1 N-=-2

We see inductively that, for every ¢ > 1,
Snt2i =2N 4+ 241

and
Snti42i =N+1—1

thus Sy 3 = 0 is the next k for which S = 0. The values of k for which Sj, = 0 satisfy the recurrence
relation p,4+1 = 3p,+3, and we compute that the first terms of the sequence are 0, 3,12, 39, 120, 363, 1092;
hence 1092 is our answer.
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4. [4] Suppose that there exist nonzero complex numbers a, b, ¢, and d such that & is a root of both the
equations ax® + bx? + cx +d = 0 and bx® + cx? + dx + a = 0. Find all possible values of k (including
complex values).

Answer: |1,—1,i,—i| Let k be a root of both polynomials. Multiplying the first polynomial by k

and subtracting the second, we have ak* — a = 0, which means that k is either 1, —1, i, or —i. If
a=b=c=d=1, then —1, i, and —i are roots of both polynomials. If a =b=c=1 and d = —3,
then 1 is a root of both polynomials. So k can be 1, —1, ¢, and —i.

5. [5] Suppose that 2 and y are complex numbers such that 2 +y = 1 and that 2%° + ¢?° = 20. Find the
sum of all possible values of x2 + y2.
Answer: We have 22 + y% + 22y = 1. Define a = 22y and b = 22 + y? for convenience. Then
a+b=1land b—a=2a>+y?— 22y = (v —y)?> = 2b— 1 so that x,y = 7%&1 Then

e R

x20+y 9

= (VBT )Y+ (VI T - 1))

- 2 [( 35 —1)2 + <220)(\/ﬁ)18 + (240>( 2 — 1)1 + }

- 2720 [(zb —1)0 4+ (22()) (2b—1)? + (240> (2b—1)% +.. ]

We want to find the sum of distinct roots of the above polynomial in b; we first prove that the original
polynomial is square-free. The conditions z+y = 1 and 22°+y?° = 20 imply that 22°+(1—2)?°—20 = 0;
let p(z) = 220 + (1 — 2)?° — 20. p is square-free if and only if GC'D(p, p') = ¢ for some constant c:

GCD(p,p') = GCD@E* +(1—2)* —20,20(z" — (1 -2)"))
= GCD(:ZZQO (1 —x)¥ + (1 — )" —20,20(z" — (1 —2)'9))
= GOD((1—2)" —20,2" — (1 —2)¥)
= GOD((1—2)" —20,2' — 20)

The roots of 2% — 20 are 1{)/Wexp(%) for some k = 0,1,...,18; the roots of (1 — x)!® — 20 are
1 — W20F ex p(27E) for some k = 0,1,...,18. If !9 — 20 and (1 — z)' — 20 share a common root,
then there exist integers m,n such that 1\“’/2077” exp(2mm) =1— V20" ex p(2’”") since the imaginary
parts of both sides must be the same, we have m = n and 1\72()7mexp(27”m) = % = 20™ = 2%, a
contradiction. Thus we have proved that the polynomial in 2 has no double roots. Since for each b
there exists a unique pair (z,%) (up to permutations) that satisfies 22 + y? = b and (z +y)? = 1, the
polynomial in b has no double roots.

Let the coefficient of ™ in the above equation be [b"]. By Vieta’s Formulas, the sum of all possible
9

values of b = 22 + 9?2 is equal to —[[bblo]]. [b10] = 2%0 (210) and [b7] = 220 (—(110)29 + (220)29); thus

N R G i ) LA
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] 210
6. [5] Suppose that a polynomial of the form p(x) = 22910 + 22099 £ ... 4+ 2 4 1 has no real roots. What
is the maximum possible number of coefficients of —1 in p?

Answer: |1005| Let p(x) be a polynomial with the maximum number of minus signs.

=

p(z) cannot have more than 1005 minus signs, otherwise p(1) < 0 and p(2) > 2201022009 _2_1 =
1, which implies, by the Intermediate Value Theorem, that p must have a root greater than 1.
1
Let p(x) = S 22010 52009 4 2008 2 41. —1 is the only real root of 22°'* +-1 = 0 but
x

p(—1) = 2011; therefore p has no real roots. Since p has 1005 minus signs, it is the desired polynomial.
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7. [5] Let a, b, ¢, x, y, and z be complex numbers such that

b+¢ c+a a+b
a= , b= , =
r—2 y—2 z—2

If 2y + yz + zz = 67 and = + y + z = 2010, find the value of xyz.

Answer: | —5892| Manipulate the equations to get a common denominator: a = % == r—2=

% == :1771:%""rc == ﬁ:ﬁ;simﬂarly,ﬁ:ﬁandﬁ:aﬁﬁc. Thus
1 n 1 n 1 _ 1
r—1 y—1 2z-1
-DE-D+@E-DE-D+@-1F-1) = @-DF-1)(=-1)
zy+tyz+ze—2x+y+2)+3 = ayz—(zytyz+zz)+(x+y+z2)—1
xyz —2xy+yz+ze)+3x+y+z2)—4 = 0
zyz — 2(67) +3(2010) —4 = 0
ryz = —bH892

8. [6] How many polynomials of degree exactly 5 with real coefficients send the set {1,2,3,4,5,6} to a
permutation of itself?

Answer: For every permutation o of {1,2,3,4,5,6}, Lagrange Interpolatio gives a polynomial
of degree at most 5 with p(z) = o(x) for every x = 1,2,3,4,5,6. Additionally, this polynomial is
unique: assume that there exist two polynomials p, ¢ of degree < 5 such that they map {1,2,3,4,5,6}
to the same permutation. Then p — g is a nonzero polynomial of degree < 5 with 6 distinct roots, a
contradiction. Thus an upper bound for the answer is 6! = 720 polynomials.

However, not every polynomial obtained by Lagrange interpolation is of degree 5 (for example, p(x) =
x). We can count the number of invalid polynomials using finite diﬁerencesﬂ A polynomial has
degree less than 5 if and only if the sequence of 5th finite differences is 0. The 5th finite difference of
p(1),p(2),p(3),p(4),p(5),p(6) is p(1) — 5p(2) + 10p(3) — 10p(4) + 5p(5) — p(6); thus we want to solve
p(1)=5p(2)+10p(3) —10p(4) +5p(5) —p(6) = 0 with {p(1), p(2), p(3), p(4), p(5),p(6)} = {1,2,3,4,5,6}.
Taking the above equation modulo 5, we get p(1) = p(6) (mod 5) = {p(1),p(6)} = {1,6}. Note that
1-5p(2)+10p(3)—10p(4)+5p(5)—6 = 0 if and only if 6—5p(5)+10p(4)—10p(3)+5p(2)—1 = 0, so we may
assume that p(1) = 1 and double our result later. Then we have {p(2),p(3),p(4),p(5)} = {2,3,4,5}
and
—p(2) +2p(3) — 2p(4) +p(5) = 1.

The above equation taken modulo 2 implies that p(2),p(5) are of opposite parity, so p(3),p(4) are of
opposite parity. We do casework on {p(2),p(5)}:

(a) p(2) =2,p(5) = 3; 2p(3) — 2p(4) = 0 is a contradiction

(b) p(2) =2,p(5) =5 2p(3) = 2p(4) = =2 = p(3) —p(4) = -1 = p(3) =3,p(4) =4

(c) p(2) =3,p(5) =2;2p(3) = 2p(4) = -2 = p(3) —p(4) = -1 = p(3) =4,p(4) =5

(d) p(2) =3,p(5) =4; 2p(3) — 2p(4) = 0 is a contradiction

(e) p(2) =4,p(5) =3;2p(3) —2p(4) =2 = p(3) —p(4) =1 but {p(3),p(4)} = {2,5}, contradiction
(f) p(2) =4,p(5) =5; 2p(3) — 2p(4) = 0 is a contradiction

(g) p(2) =5,p(5) =2; 2p(3) — 2p(4) =4 = p(3) — p(4) = 2, contradiction

(h) p(2) =5,p(5) = 4; 2p(3) — 2p(4) =2 = p(3) —p(4) =1 = p(3) = 3,p(4) =2

Hence there are a total of 720 — 2(3) = 714 polynomials.

!See http://en.wikipedia.org/wiki/Lagrange_interpolation!
2See http://www.artofproblemsolving.com/Forum/weblog_entry.php?p=1263378.
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9.

10.

[7] Let f(x) = cx(x — 1), where ¢ is a positive real number. We use f™(z) to denote the polynomial
obtained by composing f with itself n times. For every positive integer n, all the roots of f™(z) are
real. What is the smallest possible value of ¢?

Answer: We first prove that all roots of f"(x) are greater than or equal to —% and less than or
equal to 1+ £. Suppose that 7 is a root of f™(z). If r = =<, f7}(r) = {1} and =% < § <1+ ¢ since
c is positive. Suppose r # —¢; by the quadratic formula, there exist two complex numbers 71,72 such
that ri + 75 = 1 and f(r1) = f(r2) = r. Thus all the roots of f"(z) (except ) come in pairs that sum
to 1. No root r of f"(x) can be less than —§, otherwise f"1(z) has an imaginary root, f~1(r). Also,

no root r of f"(x) can be greater than 1+ ¢, otherwise its “conjugate” root will be less than —{.

Define g(z) = 3 (1 +4/1+ 4%”), the larger inverse of f(z). Note that ¢g"(x) is the largest element of

J7™(x) (which is a set). ¢"(0) should be less than or equal to 1+ § for all n. Let 2y be the nonzero
real number such that g(xzg) = xo; then cxo(zg — 1) =29 = z, =1+ % o < g(x) <z if © > g
and x < g(z) < xo if © < xo; it can be proved that g™ converges to zp. Hence we have the requirement
that 2o =1+ 1 <1+ § = c¢>2.

We verify that ¢ = 2 is possible. All the roots of f~n(z) will be real if g(0) < 1+ ¢ = 2. We know
that 0 < 2 = ¢(0) < 2, so ¢?(0) < 2 and ¢g"(0) < g"**(0) < 2 for all n. Therefore all the roots of
f™(z) are real.

[8] Let p(z) and ¢(z) be two cubic polynomials such that p(0) = —24, ¢(0) = 30, and

p(q(x)) = q(p(z))

for all real numbers z. Find the ordered pair (p(3), ¢(6)).

Answer: |(3,—24)| Note that the polynomials f(z) = az® and g(z) = —ax® commute under com-

position. Let h(z) = x + b be a linear polynomial, and note that its inverse h=!(z) = z — b is also a
linear polynomial. The composite polynomials A~! fh and h~'gh commute, since function composition
is associative, and these polynomials are also cubic.

We solve for the a and b such that (b= fh)(0) = —24 and (h~'gh)(0) = 30. We must have:
ab> —b=—-24, —ab>—b=30=a=1,b=—3

These values of a and b yield the polynomials p(z) = (z — 3)3 + 3 and ¢(x) = —(z — 3)3 + 3. The
polynomials take on the values p(3) = 3 and ¢(6) = —24.

Remark: The pair of polynomials found in the solution is not unique. There is, in fact, an entire
family of commuting cubic polynomials with p(0) = —24 and ¢(0) = 30. They are of the form

p(z) = tx(z — 3)(x — 6) — 24, q(z) = —tz(x — 3)(x — 6) + 30
where t is any real number. However, the values of p(3) and ¢(6) are the same for all polynomials in

this family. In fact, if we give the initial conditions p(0) = k; and ¢(0) = ko, then we get a general
solution of

ko — k1

3 1
P(x)zt(x?’—2(k1+k2)x2+2(k1+k2)2x>+k y x+ ki
2 + k1
3 1 ko — k
— (32 2., 1 2.\ _ R2— R
q(z) = t(m 2(k‘1+k‘2)x +2(k‘1+k‘2) x) k2+k1x+k2.
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