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Algebra & Geometry Individual Test

1. Let a, b, and c be positive real numbers. Determine the largest total number of real roots that the
following three polynomials may have among them: ax2 + bx+ c, bx2 + cx+ a, and cx2 + ax+ b.

Answer: 4 If all the polynomials had real roots, their discriminants would all be nonnegative: a2 ≥
4bc, b2 ≥ 4ca, and c2 ≥ 4ab. Multiplying these inequalities gives (abc)2 ≥ 64(abc)2, a contradiction.
Hence one of the quadratics has no real roots. The maximum of 4 real roots is attainable: for example,
the values (a, b, c) = (1, 5, 6) give −2,−3 as roots to x2 + 5x+ 6 and −1,− 1

5 as roots to 5x2 + 6x+ 1.

2. Let ABC be a triangle such that AB = 7, and let the angle bisector of ∠BAC intersect line BC at
D. If there exist points E and F on sides AC and BC, respectively, such that lines AD and EF
are parallel and divide triangle ABC into three parts of equal area, determine the number of possible
integral values for BC.

Answer: 13

A B

C

D
E

F

7

14

Note that such E,F exist if and only if
[ADC]

[ADB]
= 2. (1)

([ ] denotes area.) Since AD is the angle bisector, and the ratio of areas of triangles with equal height
is the ratio of their bases,

AC

AB
=
DC

DB
=

[ADC]

[ADB]
.

Hence (1) is equivalent to AC = 2AB = 14. Then BC can be any length d such that the triangle
inequalities are satisfied:

d+ 7 > 14

7 + 14 > d

Hence 7 < d < 21 and there are 13 possible integral values for BC.
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3. Josh takes a walk on a rectangular grid of n rows and 3 columns, starting from the bottom left corner.
At each step, he can either move one square to the right or simultaneously move one square to the left
and one square up. In how many ways can he reach the center square of the topmost row?

Answer: 2n−1 Note that Josh must pass through the center square of each row. There are 2 ways
to get from the center square of row k to the center square of row k+ 1. So there are 2n−1 ways to get
to the center square of row n.

4. Let H be a regular hexagon of side length x. Call a hexagon in the same plane a “distortion” of H if
and only if it can be obtained from H by translating each vertex of H by a distance strictly less than
1. Determine the smallest value of x for which every distortion of H is necessarily convex.

Answer: 4

A1

A2

A3 A4

A5

A6X X′

Y Y ′

Let H = A1A2A3A4A5A6 be the hexagon, and for all 1 ≤ i ≤ 6, let points A′i be considered such that
AiA

′
i < 1. Let H ′ = A′1A

′
2A
′
3A
′
4A
′
5A
′
6, and consider all indices modulo 6. For any point P in the plane,

let D(P ) denote the unit disk {Q|PQ < 1} centered at P ; it follows that A′i ∈ D(Ai).

Let X and X ′ be points on line A1A6, and let Y and Y ′ be points on line A3A4 such that A1X =
A1X

′ = A3Y = A3Y
′ = 1 and X and X ′ lie on opposite sides of A1 and Y and Y ′ lie on opposite sides

of A3. If X ′ and Y ′ lie on segments A1A6 and A3A4, respectively, then segment A′1A
′
3 lies between the

lines XY and X ′Y ′. Note that x
2 is the distance from A2 to A1A3.
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A1

A2

A3 A4

A5

A6X X′

Y Y ′

If x
2 ≥ 2, then C(A2) cannot intersect line XY , since the distance from XY to A1A3 is 1 and the

distance from XY to A2 is at least 1. Therefore, A′1A
′
3 separates A′2 from the other 3 vertices of the

hexagon. By analogous reasoning applied to the other vertices, we may conclude that H ′ is convex.

If x
2 < 2, then C(A2) intersects XY , so by choosing A′1 = X and A′3 = Y , we see that we may choose

A′2 on the opposite side of XY , in which case H ′ will be concave. Hence the answer is 4, as desired.

5. Let a ? b = ab+ a+ b for all integers a and b. Evaluate 1 ? (2 ? (3 ? (4 ? . . . (99 ? 100) . . .))).

Answer: 101!− 1

We will first show that ? is both commutative and associative.

• Commutativity: a ? b = ab+ a+ b = b ? a

• Associativity: a ? (b ? c) = a(bc + b + c) + a + bc + b + c = abc + ab + ac + bc + a + b + c and
(a ? b) ? c = (ab+ a+ b)c+ ab+ a+ b+ c = abc+ ab+ ac+ bc+ a+ b+ c. So a ? (b ? c) = (a ? b) ? c.

So we need only calculate ((. . . (1 ? 2) ? 3) ? 4) . . . ? 100). We will prove by induction that

((. . . (1 ? 2) ? 3) ? 4) . . . ? n) = (n+ 1)!− 1.

• Base case (n = 2): (1 ? 2) = 2 + 1 + 2 = 5 = 3!− 1

• Inductive step:

Suppose that
(((. . . (1 ? 2) ? 3) ? 4) . . . ? n) = (n+ 1)!− 1.

Then,

((((. . . (1 ? 2) ? 3) ? 4) . . . ? n) ? (n+ 1)) = ((n+ 1)!− 1) ? (n+ 1)

= (n+ 1)!(n+ 1)− (n+ 1) + (n+ 1)!− 1 + (n+ 1)

= (n+ 2)!− 1

Hence, ((. . . (1 ? 2) ? 3) ? 4) . . . ? n) = (n+ 1)!− 1 for all n. For n = 100, this results to 101!− 1.
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6. Nathaniel and Obediah play a game in which they take turns rolling a fair six-sided die and keep a
running tally of the sum of the results of all rolls made. A player wins if, after he rolls, the number
on the running tally is a multiple of 7. Play continues until either player wins, or else indefinitely. If
Nathaniel goes first, determine the probability that he ends up winning.

Answer: 5
11 For 1 ≤ k ≤ 6, let xk be the probability that the current player, say A, will win

when the number on the tally at the beginning of his turn is k modulo 7. The probability that the
total is l modulo 7 after his roll is 1

6 for each l 6≡ k (mod 7); in particular, there is a 1
6 chance he wins

immediately. The chance that A will win if he leaves l on the board after his turn is 1− xl. Hence for
1 ≤ k ≤ 6,

xk =
1

6

∑
1≤l≤6, l 6=k

(1− xl) +
1

6
.

Letting s =
∑6
l=1 xl, this becomes xk = xk−s

6 + 1 or 5xk

6 = − s6 + 1. Hence x1 = · · · = x6, and 6xk = s

for every k. Plugging this in gives 11xk

6 = 1, or xk = 6
11 .

Since Nathaniel cannot win on his first turn, he leaves Obediah with a number not divisible by 7.
Hence Obediah’s chance of winning is 6

11 and Nathaniel’s chance of winning is 5
11 .

7. Find all integers x such that 2x2 + x− 6 is a positive integral power of a prime positive integer.

Answer: −3, 2, 5 Let f(x) = 2x2 + x − 6 = (2x − 3)(x + 2). Suppose a positive integer a divides

both 2x− 3 and x+ 2. Then a must also divide 2(x+ 2)− (2x− 3) = 7. Hence, a can either be 1 or
7. As a result, 2x − 3 = 7n or −7n for some positive integer n, or either x + 2 or 2x − 3 is ±1. We
consider the following cases:

• (2x− 3) = 1. Then x = 2, which yields f(x) = 4, a prime power.

• (2x− 3) = −1. Then x = 1, which yields f(x) = −3, not a prime power.

• (x+ 2) = 1). Then x = −1, which yields f(x) = −5 not a prime power.

• (x+ 2) = −1. Then x = −3, which yields f(x) = 9, a prime power.

• (2x− 3) = 7. Then x = 5, which yields f(x) = 49, a prime power.

• (2x− 3) = −7. Then x = −2, which yields f(x) = 0, not a prime power.

• (2x− 3) = ±7n, for n ≥ 2. Then, since x+ 2 =
(2x− 3) + 7

2
, we have that x+ 2 is divisible by 7

but not by 49. Hence x + 2 = ±7, yielding x = 5,−9. The former has already been considered,
while the latter yields f(x) = 147.

So x can be either -3, 2 or 5.

(Note: In the official solutions packet we did not list the answer -3. This oversight was quickly noticed
on the day of the test, and only the answer −3, 2, 5 was marked as correct.

8. Let ABCDEF be a regular hexagon of area 1. Let M be the midpoint of DE. Let X be the
intersection of AC and BM , let Y be the intersection of BF and AM , and let Z be the intersection
of AC and BF . If [P ] denotes the area of polygon P for any polygon P in the plane, evaluate
[BXC] + [AY F ] + [ABZ]− [MXZY ].

Answer: 0
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A B

C

DE

F

M

XY

Z

O

Let O be the center of the hexagon. The desired area is [ABCDEF ] − [ACDM ] − [BFEM ]. Note
that [ADM ] = [ADE]/2 = [ODE] = [ABC], where the last equation holds because sin 60◦ = sin 120◦.
Thus, [ACDM ] = [ACD] + [ADM ] = [ACD] + [ABC] = [ABCD], but the area of ABCD is half the
area of the hexagon. Similarly, the area of [BFEM ] is half the area of the hexagon, so the answer is
zero.

9. For all real numbers x, let

f(x) =
1

2011
√

1− x2011
.

Evaluate (f(f(. . . (f(2011)) . . .)))2011, where f is applied 2010 times.

Answer: 20112011 Direct calculation shows that f(f(x)) =
2011
√

1− x2011
−x

and f(f(f(x))) = x.

Hence (f(f(. . . (f(x)) . . .))) = x, where f is applied 2010 times. So (f(f(. . . (f(2011)) . . .)))2011 =
20112011.

10. Let ABCD be a square of side length 13. Let E and F be points on rays AB and AD, respectively,
so that the area of square ABCD equals the area of triangle AEF . If EF intersects BC at X and
BX = 6, determine DF .

Answer:
√

13

A B

C
D

E

F

X

Y

6

7

x

y
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First Solution

Let Y be the point of intersection of lines EF and CD. Note that [ABCD] = [AEF ] implies that
[BEX] + [DY F ] = [CY X]. Since 4BEX ∼ 4CY X ∼ 4DY F , there exists some constant r such
that [BEX] = r · BX2, [Y DF ] = r · CX2, and [CY X] = r · DF 2. Hence BX2 + DF 2 = CX2, so
DF =

√
CX2 −BX2 =

√
49− 36 =

√
13.

Second Solution

Let x = DF and y = Y D. Since 4BXE ∼ 4CXY ∼ 4DFY , we have

BE

BX
=
CY

CX
=
DY

DF
=
y

x
.

Using BX = 6, XC = 7 and CY = 13− y we get BE = 6y
x and 13−y

7 = y
x . Solving this last equation

for y gives y = 13x
x+7 . Now [ABCD] = [AEF ] gives

169 =
1

2
AE ·AF =

1

2

(
13 +

6y

x

)
(13 + x) .

169 = 6y + 13x+
78y

x

13 =
6x

x+ 7
+ x+

78

x+ 7

0 = x2 − 13.

Thus x =
√

13.

11. Let f(x) = x2 + 6x+ c for all real numbers x, where c is some real number. For what values of c does
f(f(x)) have exactly 3 distinct real roots?

Answer: 11−
√
13

2 Suppose f has only one distinct root r1. Then, if x1 is a root of f(f(x)), it must

be the case that f(x1) = r1. As a result, f(f(x)) would have at most two roots, thus not satisfying
the problem condition. Hence f has two distinct roots. Let them be r1 6= r2.

Since f(f(x)) has just three distinct roots, either f(x) = r1 or f(x) = r2 has one distinct root. Assume
without loss of generality that r1 has one distinct root. Then f(x) = x2 + 6x+ c = r1 has one root, so
that x2 + 6x + c − r1 is a square polynomial. Therefore, c − r1 = 9, so that r1 = c − 9. So c − 9 is a
root of f . So (c− 9)2 + 6(c− 9) + c = 0, yielding c2 − 11c+ 27 = 0, or (c− 11

2 )2 = 13
2 . This results to

c = 11±
√
13

2 .

If c = 11−
√
13

2 , f(x) = x2 + 6x + 11−
√
13

2 = (x + 7+
√
13

2 )(x + 5−
√
13

2 ). We know f(x) = −7−
√
13

2 has a

double root, -3. Now −5+
√
13

2 > −7−
√
13

2 so the second root is above the vertex of the parabola, and is
hit twice.

If c = 11+
√
13

2 , f(x) = x2 + 6x + 11+
√
13

2 = (x + 7−
√
13

2 )(x + 5+
√
13

2 ). We know f(x) = −7+
√
13

2 has a
double root, -3, and this is the value of f at the vertex of the parabola, so it is its minimum value.

Since −5−
√
13

2 < −7+
√
13

2 , f(x) = −5−
√
13

2 has no solutions. So in this case, f has only one real root.

So the answer is c = 11−
√
13

2 .

Note: In the solutions packet we had both roots listed as the correct answer. We noticed this oversight
on the day of the test and awarded points only for the correct answer.

12. Let ABCDEF be a convex equilateral hexagon such that lines BC, AD, and EF are parallel. Let
H be the orthocenter of triangle ABD. If the smallest interior angle of the hexagon is 4 degrees,
determine the smallest angle of the triangle HAD in degrees.

Answer: 3
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A

B

C

D

E

F
H

A′

B′

D′

A

B

C

D

E

F
H

Note that ABCD and DEFA are isosceles trapezoids, so ∠BAD = ∠CDA and ∠FAD = ∠EDA. In
order for the hexagon to be convex, the angles at B, C, E, and F have to be obtuse, so ∠A = ∠D = 4◦.
Letting s be a side length of the hexagon, AD = AB cos∠BAD + BC + CD cos∠CDA = s(1 +
2 cos∠BAD), so ∠BAD is uniquely determined by AD. Since the same equation holds for trapezoid
DEFA, it follows that ∠BAD = ∠FAD = ∠CDA = ∠EDA = 2◦. Then ∠BCD = 180◦ − 2◦ = 178◦.
Since 4BCD is isosceles, ∠CDB = 1◦ and ∠BDA = 1◦. (One may also note that ∠BDA = 1◦ by
observing that equal lengths AB and BC must intercept equal arcs on the circumcircle of isosceles
trapezoid ABCD).

Let A′, B′, andD′ be the feet of the perpendiculars from A, B, andD toBD, DA, and AB, respectively.
Angle chasing yields

∠AHD = ∠AHB′ + ∠DHB′ = (90◦ − ∠A′AB′) + (90◦ − ∠D′DB′)

= ∠BDA+ ∠BAD = 1◦ + 2◦ = 3◦

∠HAD = 90◦ − ∠AHB′ = 89◦

∠HDA = 90◦ − ∠DHB′ = 88◦

Hence the smallest angle in 4HAD is 3◦.

It is faster, however, to draw the circumcircle of DEFA, and to note that since H is the orthocenter
of triangle ABD, B is the orthocenter of triangle HAD. Then since F is the reflection of B across
AD, quadrilateral HAFD is cyclic, so ∠AHD = ∠ADF + ∠DAF = 1◦ + 2◦ = 3◦, as desired.
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13. How many polynomials P with integer coefficients and degree at most 5 satisfy 0 ≤ P (x) < 120 for all
x ∈ {0, 1, 2, 3, 4, 5}?

Answer: 86400000

For each nonnegative integer i, let xi = x(x− 1) · · · (x− i+ 1). (Define x0 = 1.)

Lemma: Each polynomial with integer coefficients f can be uniquely written in the form

f(x) = anx
n + . . .+ a1x

1 + a0x
0, an 6= 0.

Proof: Induct on the degree. The base case (degree 0) is clear. If f has degree m with leading coefficient
c, then by matching leading coefficients we must have m = n and an = c. By the induction hypothesis,
f(x)− cxn can be uniquely written as an−1x

n−1(x) + . . .+ a1x
1 + a0x

0.

There are 120 possible choices for a0, namely any integer in [0, 120). Once a0, . . . , ai−1 have been
chosen so 0 ≤ P (0), . . . , P (i− 1) < 120, for some 0 ≤ i ≤ 5, then we have

P (i) = aii! + ai−1i
i−1 + · · ·+ a0

so by choosing ai we can make P (i) any number congruent to ai−1i
i−1 + · · ·+a0 modulo i!. Thus there

are 120
i! choices for ai. Note the choice of ai does not affect the value of P (0), . . . , P (i − 1). Thus all

polynomials we obtain in this way are valid. The answer is

5∏
i=0

120

i!
= 86400000.

Note: Their is also a solution involving finite differences that is basically equivalent to this solution.
One proves that for i = 0, 1, 2, 3, 4, 5 there are 5!

i! ways to pick the ith finite difference at the point 0.

14. Let ABCD be a cyclic quadrilateral, and suppose that BC = CD = 2. Let I be the incenter of triangle
ABD. If AI = 2 as well, find the minimum value of the length of diagonal BD.

Answer: 2
√

3

A

B

C

D

I
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Let T be the point where the incircle intersects AD, and let r be the inradius and R be the circumradius
of 4ABD. Since BC = CD = 2, C is on the midpoint of arc BD on the opposite side of BD as A,
and hence on the angle bisector of A. Thus A, I, and C are collinear. We have the following formulas:

AI =
IM

sin∠IAM
=

r

sin A
2

BC = 2R sin
A

2
BD = 2R sinA

The last two equations follow from the extended law of sines on 4ABC and 4ABD, respectively.

Using AI = 2 = BC gives sin2 A
2 = r

2R . However, it is well-known that R ≥ 2r with equality for an

equilateral triangle (one way to see this is the identity 1+ r
R = cosA+cosB+cosD). Hence sin2 A

2 ≤
1
4

and A
2 ≤ 30◦. Then

BD = 2R

(
2 sin

A

2
cos

A

2

)
= BC · 2 cos

A

2
≥ 2

(
2 ·
√

3

2

)
= 2
√

3

with equality when 4ABD is equilateral.

Remark: Similar but perhaps simpler computations can be made by noting that if AC intersects BD
at X, then AB/BX = AD/DX = 2, which follows from the exterior angle bisector theorem; if IA is
the A-excenter of triangle ABC, then AIA/XIA = 2 since it is well-known that C is the circumcenter
of cyclic quadrilateral BIDIA.

15. Let f(x) = x2 − r2x + r3 for all real numbers x, where r2 and r3 are some real numbers. Define a
sequence {gn} for all nonnegative integers n by g0 = 0 and gn+1 = f(gn). Assume that {gn} satisfies
the following three conditions: (i) g2i < g2i+1 and g2i+1 > g2i+2 for all 0 ≤ i ≤ 2011; (ii) there exists
a positive integer j such that gi+1 > gi for all i > j, and (iii) {gn} is unbounded. If A is the greatest
number such that A ≤ |r2| for any function f satisfying these properties, find A.

Answer: 2

Consider the function f(x)−x. By the constraints of the problem, f(x)−x must be negative for some
x, namely, for x = g2i+1, 0 ≤ i ≤ 2011. Since f(x) − x is positive for x of large absolute value, the
graph of f(x)− x crosses the x-axis twice and f(x)− x has two real roots, say a < b. Factoring gives
f(x)− x = (x− a)(x− b), or f(x) = (x− a)(x− b) + x.

Now, for x < a, f(x) > x > a, while for x > b, f(x) > x > b. Let c 6= b be the number such that
f(c) = f(b) = b. Note that b is not the vertex as f(a) = a < b, so by the symmetry of quadratics, c
exists and b+c

2 = r2
2 as the vertex of the parabola. By the same token, b+a

2 = r2+1
2 is the vertex of

f(x)− x. Hence c = a− 1. If f(x) > b then x < c or x > b. Consider the smallest j such that gj > b.
Then by the above observation, gj−1 < c. (If gi ≥ b then f(gi) ≥ gi ≥ b so by induction, gi+1 ≥ gi for
all i ≥ j. Hence j > 1; in fact j ≥ 4025.) Since gj−1 = f(gj−2), the minimum value of f is less than c.
The minimum value is the value of f evaluated at its vertex, b+a−12 , so

f

(
b+ a− 1

2

)
< c(

b+ a− 1

2
− a
)(

b+ a− 1

2
− b
)

+
b+ a− 1

2
< a− 1

1− (b− a)2

4
+
b− a+ 1

2
< 0

3

4
<

(b− a)2

4
− b− a

2

4 < (b− a− 1)2.
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Then either b − a − 1 < −2 or b − a − 1 > 2, but b > a, so the latter must hold and (b − a)2 > 9.
Now, the discriminant of f(x) − x equals (b − a)2 (the square of the difference of the two roots) and
(r2 + 1)2 − 4r3 (from the coefficients), so (r2 + 1)2 > 9 + 4r3. But r3 = g1 > g0 = 0 so |r2| > 2.

We claim that we can make |r2| arbitrarily close to 2, so that the answer is 2. First define Gi, i ≥ 0
as follows. Let N ≥ 2012 be an integer. For ε > 0 let h(x) = x2 − 2 − ε, gε(x) = −

√
x+ 2 + ε and

G2N+1 = 2 + ε, and define Gi recursively by Gi = gε(Gi+1), Gi+1 = h(Gi). (These two equations are
consistent.) Note the following.

(i) G2i < G2i+1 andG2i+1 > G2i+2 for 0 ≤ i ≤ N−1. First noteG2N = −
√

4 + 2ε > −
√

4 + 2ε+ ε2 =
−2 − ε. Let l be the negative solution to h(x) = x. Note that −2 − ε < G2N < l < 0 since
h(G2N ) > 0 > G2N . Now gε(x) is defined as long as x ≥ −2− ε, and it sends (−2− ε, l) into (l, 0)
and (l, 0) into (−2− ε, l). It follows that the Gi, 0 ≤ i ≤ 2N are well-defined; moreover, G2i < l
and G2i+1 > l for 0 ≤ i ≤ N − 1 by backwards induction on i, so the desired inequalities follow.

(ii) Gi is increasing for i ≥ 2N + 1. Indeed, if x ≥ 2 + ε, then x2 − x = x(x− 1) > 2 + ε so h(x) > x.
Hence 2 + ε = G2N+1 < G2N+2 < · · · .

(iii) Gi is unbounded. This follows since h(x)− x = x(x− 2)− 2− ε is increasing for x > 2 + ε, so Gi
increases faster and faster for i ≥ 2N + 1.

Now define f(x) = h(x + G0) − G0 = x2 + 2G0x + G2
0 − G0 − 2 − ε. Note Gi+1 = h(Gi) while

gi+1 = f(gi) = h(gi + G0) − G0, so by induction gi = Gi − G0. Since {Gi}∞i=0 satisfies (i), (ii), and
(iii), so does gi.

We claim that we can make G0 arbitrarily close to −1 by choosing N large enough and ε small enough;
this will make r2 = −2G0 arbitrarily close to 2. Choosing N large corresponds to taking G0 to be a
larger iterate of 2 + ε under gε(x). By continuity of this function with respect to x and ε, it suffices to
take ε = 0 and show that (letting g = g0)

g(n)(2) = g(· · · g︸ ︷︷ ︸
n

(2) · · · )→ −1 as n→∞.

But note that for 0 ≤ θ ≤ π
2 ,

g(−2 cos θ) = −
√

2− 2 cos θ = −2 sin

(
θ

2

)
= 2 cos

(
π

2
− θ

2

)
.

Hence by induction, g(n)(−2 cos θ) = −2 cos
(
π
2 −

π
4 + · · ·+ (−1)n

(
θ − π

2n

))
. Hence g(n)(2) = g(n−1)(−2 cos 0)

converges to −2 cos(π2 −
π
4 + · · · ) = −2 cos(π3 ) = −1, as needed.

16. Let ABCD be a quadrilateral inscribed in the unit circle such that ∠BAD is 30 degrees. Let m denote
the minimum value of CP + PQ + CQ, where P and Q may be any points lying along rays AB and
AD, respectively. Determine the maximum value of m.

Answer: 2
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B
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D

E

F

G

H

P

Q

R

For a fixed quadrilateral ABCD as described, we first show that m, the minimum possible length of
CP + PQ + QC, equals the length of AC. Reflect B, C, and P across line AD to points E, F , and
R, respectively, and then reflect D and F across AE to points G and H, respectively. These two
reflections combine to give a 60◦ rotation around A, so triangle ACH is equilateral. It also follows
that RH is a 60◦ rotation of PC around A, so, in particular, these segments have the same length.
Because QR = QP by reflection,

CP + PQ+QC = CQ+QR+RH.

The latter is the length of a broken path CQRH from C to H, and by the “shortest path is a straight
line” principle, this total length is at least as long as CH = CA. (More directly, this follows from the
triangle inequality: (CQ+QR)+RH ≥ CR+RH ≥ CH). Therefore, the lower bound m ≥ AC indeed
holds. To see that this is actually an equality, note that choosing Q as the intersection of segment CH
with ray AD, and choosing P so that its reflection R is the intersection of CH with ray AE, aligns
path CQRH with segment CH, thus obtaining the desired minimum m = AC.

We may conclude that the largest possible value of m is the largest possible length of AC, namely 2:
the length of a diameter of the circle.

17. Let z = cos
2π

2011
+ i sin

2π

2011
, and let

P (x) = x2008 + 3x2007 + 6x2006 + . . .
2008 · 2009

2
x+

2009 · 2010

2

for all complex numbers x. Evaluate P (z)P (z2)P (z3) . . . P (z2010).

Answer: 20112009 · (10052011 − 10042011)

Multiply P (x) by x− 1 to get

P (x)(x− 1) = x2009 + 2x2008 + . . .+ 2009x− 2009 · 2010

2
,

or,

P (x)(x− 1) + 2010 · 1005 = x2009 + 2x2008 + . . .+ 2009x+ 2010.

Multiplying by x− 1 once again:

Algebra & Geometry Individual Test



(x− 1)(P (x)(x− 1) +
2010 · 2011

2
) = x2010 + x2009 + . . .+ x− 2010,

= (x2010 + x2009 + . . .+ x+ 1)− 2011.

Hence,

P (x) =

(x2010 + x2009 + . . .+ x+ 1)− 2011

x− 1
− 2011 · 1005

x− 1

Note that x2010+x2009+. . .+x+1 has z, z2, . . . , z2010 as roots, so they vanish at those points. Plugging
those 2010 powers of z into the last equation, and multiplying them together, we obtain

2010∏
i=1

P (zi) =
(−2011) · 1005 · (x− 1004

1005
)

(x− 1)2
.

Note that (x− z)(x− z2) . . . (x− z2010) = x2010 + x2009 + . . .+ 1. Using this, the product turns out to
be 20112009 · (10052011 − 10042011).

18. Collinear points A, B, and C are given in the Cartesian plane such that A = (a, 0) lies along the
x-axis, B lies along the line y = x, C lies along the line y = 2x, and AB/BC = 2. If D = (a, a), the
circumcircle of triangle ADC intersects y = x again at E, and ray AE intersects y = 2x at F , evaluate
AE/EF .

Answer: 7
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A

B

C
D

E

F

O

P
Q

Let points O, P , and Q be located at (0, 0), (a, 2a), and (0, 2a), respectively. Note that BC/AB = 1/2
implies [OCD]/[OAD] = 1/2, so since [OPD] = [OAD], [OCD]/[OPD] = 1/2. It follows that
[OCD] = [OPD]. Hence OC = CP . We may conclude that triangles OCQ and PCA are congruent,
so C = (a/2, a).
It follows that ∠ADC is right, so the circumcircle of triangle ADC is the midpoint of AC, which
is located at (3a/4, a/2). Let (3a/4, a/2) = H, and let E = (b, b). Then the power of the point
O with respect to the circumcircle of ADC is OD · OE = 2ab, but it may also be computed as
OH2 −HA2 = 13a/16− 5a/16 = a/2. It follows that b = a/4, so E = (a/4, a/4).
We may conclude that line AE is x + 3y = a, which intersects y = 2x at an x-coordinate of a/7.
Therefore, AE/EF = (a− a/4)/(a/4− a/7) = (3a/4)/(3a/28) = 7.

Remark: The problem may be solved more quickly if one notes from the beginning that lines OA,
OD, OP , and OQ form a harmonic pencil because D is the midpoint of AP and lines OQ and AP are
parallel.

19. Let {an} and {bn} be sequences defined recursively by a0 = 2; b0 = 2, and an+1 = an
√

1 + a2n + b2n−bn;

bn+1 = bn
√

1 + a2n + b2n + an. Find the ternary (base 3) representation of a4 and b4.

Answer: 1000001100111222 and 2211100110000012 Note first that
√

1 + a2n + b2n = 32
n

. The
proof is by induction; the base case follows trivially from what is given. For the inductive step, note
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that 1 + a2n+1 + b2n+1 = 1 + a2n(1 + a2n + b2n) + b2n − 2anbn
√

1 + a2n + b2n + b2n(1 + a2n + b2n) + a2n +

2anbn
√

1 + a2n + b2n = 1 + (a2n + b2n)(1 + a2n + b2n) + a2n + b2n = (1 + a2n + b2n)2. Invoking the inductive

hypothesis, we see that
√

1 + a2n+1 + b2n+1 = (32
n

)2 = 32
n+1

, as desired.

The quickest way to finish from here is to consider a sequence of complex numbers {zn} defined by
zn = an+ bni for all nonnegative integers n. It should be clear that z0 = 2 + 2i and zn+1 = zn(32

n

+ i).

Therefore, z4 = (2 + 2i)(32
0

+ i)(32
1

+ i)(32
2

+ i)(32
3

+ i). This product is difficult to evaluate in
the decimal number system, but in ternary the calculation is a cinch! To speed things up, we will
use balanced ternary1, in which the three digits allowed are −1, 0, and 1 rather than 0, 1, and 2. Let
x+ yi = (32

0

+ i)(32
1

+ i)(32
2

+ i)(32
3

+ i), and consider the balanced ternary representation of x and
y. For all 0 ≤ j ≤ 15, let xj denote the digit in the 3j place of x, let yj denote the digit in the 3j place
of y, and let b(j) denote the number of ones in the binary representation of j. It should be clear that
xj = −1 if b(j) ≡ 2 (mod 4), xj = 0 if b(j) ≡ 1 (mod 2), and xj = 1 if b(j) ≡ 0 (mod 4). Similarly,
yj = −1 if b(j) ≡ 1 (mod 4), yj = 0 if b(j) ≡ 0 (mod 2), and yj = 1 if b(j) ≡ 3 (mod 4). Converting
to ordinary ternary representation, we see that x = 2212112211220013 and y = 1100222022121203. It
remains to note that a4 = 2x− 2y and b4 = 2x+ 2y and perform the requisite arithmetic to arrive at
the answer above.

20. Let ω1 and ω2 be two circles that intersect at points A and B. Let line l be tangent to ω1 at P and to
ω2 at Q so that A is closer to PQ than B. Let points R and S lie along rays PA and QA, respectively,
so that PQ = AR = AS and R and S are on opposite sides of A as P and Q. Let O be the circumcenter
of triangle ASR, and let C and D be the midpoints of major arcs AP and AQ, respectively. If ∠APQ
is 45 degrees and ∠AQP is 30 degrees, determine ∠COD in degrees.

Answer: 142.5

A

B

P

Q

R

S
C

D

T

T ′

We use directed angles throughout the solution.

Let T denote the point such that ∠TCD = 1/2∠APQ and ∠TDC = 1/2∠AQP . We claim that T is
the circumcenter of triangle SAR.

Since CP = CA, QP = RA, and ∠CPQ = ∠CPA + ∠APQ = ∠CPA + ∠ACP = ∠CAR, we have
4CPQ ∼= 4CAR. By spiral similarity, we have 4CPA ∼ 4CQR.

Let T ′ denote the reflection of T across CD. Since ∠TCT ′ = ∠APQ = ∠ACP , we have 4TCT ′ ∼
4ACP ∼ 4RCQ. Again, by spiral similarity centered at C, we have 4CTR ∼ 4CT ′Q. But
CT = CT ′, so 4CTR ∼= 4CT ′Q and TR = T ′Q. Similarly, 4DTT ′ ∼ 4DAQ, and spiral similarity
centered at D shows that 4DTA ∼= 4DT ′Q. Thus TA = T ′Q = TR.

We similarly have TA = T ′P = TS, so T is indeed the circumcenter. Therefore, we have ∠COD =
∠CTD = 180◦ − 45◦

2 −
30◦

2 = 142.5◦.

1http://en.wikipedia.org/wiki/Balanced_ternary
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