
14th Annual Harvard-MIT Mathematics Tournament
Saturday 12 February 2011

Calculus & Combinatorics Individual Test

1. A classroom has 30 students and 30 desks arranged in 5 rows of 6. If the class has 15 boys and 15
girls, in how many ways can the students be placed in the chairs such that no boy is sitting in front
of, behind, or next to another boy, and no girl is sitting in front of, behind, or next to another girl?

Answer: 2 · 15!2 If we color the desks of the class in a checkerboard pattern, we notice that all of
one gender must go in the squares colored black, and the other gender must go in the squares colored
white. There are 2 ways to pick which gender goes in which color, 15! ways to put the boys into desks
and 15! ways to put the girls into desks. So the number of ways is 2 · 15!2.

(There is a little ambiguity in the problem statement as to whether the 15 boys and the 15 girls are
distinguishable or not. If they are not distinguishable, the answer is clearly 2. Given the number of
contestants who submitted the answer 2, the graders judged that there was enough ambiguity to justify
accepting 2 as a correct answer. So both 2 and 2 · 15!2 were accepted as correct answers.)

2. Let a, b, and c be positive real numbers. Determine the largest total number of real roots that the
following three polynomials may have among them: ax2 + bx+ c, bx2 + cx+ a, and cx2 + ax+ b.

Answer: 4 If all the polynomials had real roots, their discriminants would all be nonnegative: a2 ≥
4bc, b2 ≥ 4ca, and c2 ≥ 4ab. Multiplying these inequalities gives (abc)2 ≥ 64(abc)2, a contradiction.
Hence one of the quadratics has no real roots. The maximum of 4 real roots is attainable: for example,
the values (a, b, c) = (1, 5, 6) give −2,−3 as roots to x2 + 5x+ 6 and −1,− 1

5 as roots to 5x2 + 6x+ 1.

3. Let f : R → R be a differentiable function such that f(0) = 0, f(1) = 1, and |f ′(x)| ≤ 2 for all real

numbers x. If a and b are real numbers such that the set of possible values of

∫ 1

0

f(x) dx is the open

interval (a, b), determine b− a.

Answer: 3
4 Draw lines of slope ±2 passing through (0, 0) and (1, 1). These form a parallelogram

with vertices (0, 0), (.75, 1.5), (1, 1), (.25,−.5). By the mean value theorem, no point of (x, f(x)) lies
outside this parallelogram, but we can construct functions arbitrarily close to the top or the bottom
of the parallelogram while satisfying the condition of the problem. So (b − a) is the area of this
parallelogram, which is 3

4 .

4. Josh takes a walk on a rectangular grid of n rows and 3 columns, starting from the bottom left corner.
At each step, he can either move one square to the right or simultaneously move one square to the left
and one square up. In how many ways can he reach the center square of the topmost row?

Answer: 2n−1 Note that Josh must pass through the center square of each row. There are 2 ways
to get from the center square of row k to the center square of row k+ 1. So there are 2n−1 ways to get
to the center square of row n.

5. Let ABC be a triangle such that AB = 7, and let the angle bisector of ∠BAC intersect line BC at
D. If there exist points E and F on sides AC and BC, respectively, such that lines AD and EF
are parallel and divide triangle ABC into three parts of equal area, determine the number of possible
integral values for BC.

Answer: 13
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C

D
E

F

7

14

Note that such E,F exist if and only if
[ADC]

[ADB]
= 2. (1)

([ ] denotes area.) Since AD is the angle bisector, and the ratio of areas of triangles with equal height
is the ratio of their bases,

AC

AB
=
DC

DB
=

[ADC]

[ADB]
.

Hence (1) is equivalent to AC = 2AB = 14. Then BC can be any length d such that the triangle
inequalities are satisfied:

d+ 7 > 14

7 + 14 > d

Hence 7 < d < 21 and there are 13 possible integral values for BC.

6. Nathaniel and Obediah play a game in which they take turns rolling a fair six-sided die and keep a
running tally of the sum of the results of all rolls made. A player wins if, after he rolls, the number
on the running tally is a multiple of 7. Play continues until either player wins, or else indefinitely. If
Nathaniel goes first, determine the probability that he ends up winning.

Answer: 5
11 For 1 ≤ k ≤ 6, let xk be the probability that the current player, say A, will win

when the number on the tally at the beginning of his turn is k modulo 7. The probability that the
total is l modulo 7 after his roll is 1

6 for each l 6≡ k (mod 7); in particular, there is a 1
6 chance he wins

immediately. The chance that A will win if he leaves l on the board after his turn is 1− xl. Hence for
1 ≤ k ≤ 6,

xk =
1

6

∑
1≤l≤6, l 6=k

(1− xl) +
1

6
.

Letting s =
∑6
l=1 xl, this becomes xk = xk−s

6 + 1 or 5xk

6 = − s6 + 1. Hence x1 = · · · = x6, and 6xk = s

for every k. Plugging this in gives 11xk

6 = 1, or xk = 6
11 .

Since Nathaniel cannot win on his first turn, he leaves Obediah with a number not divisible by 7.
Hence Obediah’s chance of winning is 6

11 and Nathaniel’s chance of winning is 5
11 .
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7. Let ABCDEF be a regular hexagon of area 1. Let M be the midpoint of DE. Let X be the
intersection of AC and BM , let Y be the intersection of BF and AM , and let Z be the intersection
of AC and BF . If [P ] denotes the area of polygon P for any polygon P in the plane, evaluate
[BXC] + [AY F ] + [ABZ]− [MXZY ].

Answer: 0

A B

C

DE

F

M

XY

Z

O

Let O be the center of the hexagon. The desired area is [ABCDEF ] − [ACDM ] − [BFEM ]. Note
that [ADM ] = [ADE]/2 = [ODE] = [ABC], where the last equation holds because sin 60◦ = sin 120◦.
Thus, [ACDM ] = [ACD] + [ADM ] = [ACD] + [ABC] = [ABCD], but the area of ABCD is half the
area of the hexagon. Similarly, the area of [BFEM ] is half the area of the hexagon, so the answer is
zero.

8. Let f : [0, 1)→ R be a function that satisfies the following condition: if

x =

∞∑
n=1

an
10n

= .a1a2a3 . . .

is the decimal expansion of x and there does not exist a positive integer k such that an = 9 for all
n ≥ k, then

f(x) =

∞∑
n=1

an
102n

.

Determine f ′
(
1
3

)
.

Answer: 0 Note that 1
3 =

∑∞
n=1

3
10n .

Clearly f is an increasing function. Also for any integer n ≥ 1, we see from decimal expansions that
f( 1

3 ±
1

10n )− f( 1
3 ) = ± 1

102n .

Consider h such that 10−n−1 ≤ |h| < 10−n. The two properties of f outlined above show that |f( 1
3 +

h)− f( 1
3 )| < 1

102n . And from | 1h | ≤ 10n+1, we get
∣∣∣ f( 1

3+h)−f(
1
3 )

h

∣∣∣ < 1
10n−1 . Taking n→∞ gives h→ 0

and f ′( 1
3 ) = limn→∞

1
10n−1 = 0.

9. The integers from 1 to n are written in increasing order from left to right on a blackboard. David
and Goliath play the following game: starting with David, the two players alternate erasing any two
consecutive numbers and replacing them with their sum or product. Play continues until only one
number on the board remains. If it is odd, David wins, but if it is even, Goliath wins. Find the 2011th
smallest positive integer greater than 1 for which David can guarantee victory.
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Answer: 4022 If n is odd and greater than 1, then Goliath makes the last move. No matter what
two numbers are on the board, Goliath can combine them to make an even number. Hence Goliath
has a winning strategy in this case.

Now suppose n is even. We can replace all numbers on the board by their residues modulo 2. Initially
the board reads 1, 0, 1, 0, . . . , 1, 0. David combines the rightmost 1 and 0 by addition to make 1, so now
the board reads 1, 0, 1, 0, . . . , 0, 1. We call a board of this form a “good” board. When it is Goliath’s
turn, and there is a good board, no matter where he moves, David can make a move to restore a good
board. Indeed, Goliath must combine a neighboring 0 and 1; David can then combine that number
with a neighboring 1 to make 1 and create a good board with two fewer numbers.

David can ensure a good board after his last turn. But a good board with one number is simply 1,
so David wins. So David has a winning strategy if n is even. Therefore, the 2011th smallest positive
integer greater than 1 for which David can guarantee victory is the 2011th even positive integer, which
is 4022.

10. Evaluate

∫ ∞
1

(
lnx

x

)2011

dx.

Answer: 2011!
20102012 By the chain rule,

d

dx
(lnx)n =

n lnn−1 x

x
.

We calculate the definite integral using integration by parts:∫ ∞
x=1

(lnx)n

x2011
dx =

[
(lnx)n

−2010x2010

]x=∞
x=1

−
∫ ∞
x=1

n(lnx)n−1

−2010x2011
dx

But ln(1) = 0, and limx→∞
(ln x)n

x2010 = 0 for all n > 0. So∫ ∞
x=1

(lnx)n

x2011
dx =

∫ ∞
x=1

n(lnx)n−1

2010x2011
dx

It follows that ∫ ∞
x=1

(lnx)n

x2011
dx =

n!

2010n

∫ ∞
x=1

1

x2011
dx =

n!

2010n+1

So the answer is 2011!
20102012 .

11. Mike and Harry play a game on an 8× 8 board. For some positive integer k, Mike chooses k squares
and writes an M in each of them. Harry then chooses k + 1 squares and writes an H in each of them.
After Harry is done, Mike wins if there is a sequence of letters forming “HMM” or “MMH,” when
read either horizontally or vertically, and Harry wins otherwise. Determine the smallest value of k for
which Mike has a winning strategy.

Answer: 16

Suppose Mike writes k M ’s. Let a be the number of squares which, if Harry writes an H in, will yield
either HMM or MMH horizontally, and let b be the number of squares which, if Harry writes an H
in, will yield either HMM or MMH vertically. We will show that a ≤ k and b ≤ k. Then, it will
follow that there are at most a+ b ≤ 2k squares which Harry cannot write an H in. There will be at
least 64−k− 2k = 64− 3k squares which Harry can write in. If 64− 3k ≥ k+ 1, or k ≤ 15, then Harry
wins.

We will show that a ≤ k (that b ≤ k will follow by symmetry). Suppose there are ai M ’s in row i. In
each group of 2 or more consective M ’s, Harry cannot write H to the left or right of that group, giving
at most 2 forbidden squares. Hence ai is at most the number of M ’s in row i. Summing over the rows
gives the desired result.

Mike can win by writing 16 M ’s according to the following diagram:
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· · · · · · · ·
· M M · · M M ·
· M M · · M M ·
· · · · · · · ·
· · · · · · · ·
· M M · · M M ·
· M M · · M M ·
· · · · · · · ·

12. Sarah and Hagar play a game of darts. Let O0 be a circle of radius 1. On the nth turn, the player
whose turn it is throws a dart and hits a point pn randomly selected from the points of On−1. The
player then draws the largest circle that is centered at pn and contained in On−1, and calls this circle
On. The player then colors every point that is inside On−1 but not inside On her color. Sarah goes
first, and the two players alternate turns. Play continues indefinitely. If Sarah’s color is red, and
Hagar’s color is blue, what is the expected value of the area of the set of points colored red?

Answer: 6π
7 Let f(r) be the average area colored red on a dartboard of radius r if Sarah plays first.

Then f(r) is proportional to r2. Let f(r) = (πx)r2 for some constant x. We want to find f(1) = πx.

In the first throw, if Sarah’s dart hits a point with distance r from the center of O0, the radius of O1

will be 1−r. The expected value of the area colored red will be (π−π(1−r)2)+(π(1−r)2−f(1−r)) =
π − f(1− r). The value of f(1) is the average value of π − f(1− r) over all points in O0. Using polar
coordinates, we get

f(1) =

2π∫
0

1∫
0

(π − f(1− r))rdrdθ

2π∫
0

1∫
0

rdrdθ

πx =

1∫
0

(π − πx(1− r)2)rdr

1∫
0

rdr

πx

2
=

∫ 1

0

πr − πxr(1− r)2dr

πx

2
=
π

2
− πx(

1

2
− 2

3
+

1

4
)

πx

2
=
π

2
− πx

12

πx =
6π

7

13. The ordered pairs (2011, 2), (2010, 3), (2009, 4), . . ., (1008, 1005), (1007, 1006) are written from left to
right on a blackboard. Every minute, Elizabeth selects a pair of adjacent pairs (xi, yi) and (xj , yj), with

(xi, yi) left of (xj , yj), erases them, and writes

(
xiyixj
yj

,
xiyiyj
xj

)
in their place. Elizabeth continues

this process until only one ordered pair remains. How many possible ordered pairs (x, y) could appear
on the blackboard after the process has come to a conclusion?

Answer: 504510 First, note that none of the numbers will ever be 0. Let ? denote the replacement
operation. For each pair on the board (xi, yi) define its primary form to be (xi, yi) and its secondary
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form to be [xiyi,
xi

yi
]. Note that the primary form determines the secondary form uniquely and vice

versa. In secondary form,

[a1, b1] ? [a2, b2] =

(√
a1b1,

√
a1
b1

)
?

(√
a2b2,

√
a2
b2

)
=

(
a1b2,

a1
b2

)
= [a21, b

2
2].

Thus we may replace all pairs on the board by their secondary form and use the above rule for ?
instead. From the above rule, we see that if the leftmost number on the board is x, then after one
minute it will be x or x2 depending on whether it was erased in the intervening step, and similarly for
the rightmost number. Let k be the number of times the leftmost pair is erased and n be the number
of times the rightmost pair is erased. Then the final pair is[

40222
k

,

(
1007

1006

)2n
]
. (2)

Any step except the last cannot involve both the leftmost and rightmost pair, so k + n ≤ 1005. Since
every pair must be erased at least once, k, n ≥ 1. Every pair of integers satisfying the above can occur,
for example, by making 1005− k − n moves involving only the pairs in the middle, then making k − 1
moves involving the leftmost pair, and finally n moves involving the rightmost pair.

In light of (2), the answer is the number of possible pairs (k, n), which is

1004∑
k=1

1005−k∑
n=1

1 =

1004∑
k=1

1005− k =

1004∑
k=1

k =
1004 · 1005

2
= 504510.

14. Let f : [0, 1] → [0, 1] be a continuous function such that f(f(x)) = 1 for all x ∈ [0, 1]. Determine the

set of possible values of

∫ 1

0

f(x) dx.

Answer: ( 3
4 , 1] Since the maximum value of f is 1,

∫ 1

0
f(x)dx ≤ 1.

By our condition f(f(x)) = 1, f is 1 at any point within the range of f . Clearly, 1 is in the range of
f , so f(1) = 1. Now f(x) is continuous on a closed interval so it attains a minimum value c. Since c
is in the range of f , f(c) = 1.

If c = 1, f(x) = 1 for all x and
∫ 1

0
f(x)dx = 1.

Now assume c < 1. By the intermediate value theorem, since f is continuous it attains all values
between c and 1. So for all x ≥ c, f(x) = 1. Therefore,

∫ 1

0

f(x)dx =

∫ c

0

f(x)dx+ (1− c).

Since f(x) ≥ c,
∫ c
0
f(x)dx > c2, and the equality is strict because f is continuous and thus cannot be

c for all x < c and 1 at c. So

∫ 1

0

f(x)dx > c2 + (1− c) = (c− 1

2
)2 +

3

4
≥ 3

4
.

Therefore 3
4 <

∫ 1

0
f(x)dx ≤ 1, and it is easy to show that every value in this interval can be reached.

15. Let A = {1, 2, . . . , 2011}. Find the number of functions f from A to A that satisfy f(n) ≤ n for all n
in A and attain exactly 2010 distinct values.

Answer: 22011 − 2012 Let n be the element of A not in the range of f . Let m be the element of A
that is hit twice.
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We now sum the total number of functions over n,m. Clearly f(1) = 1, and by induction, for x ≤
m, f(x) = x. Also unless n = 2011, f(2011) = 2011 because f can take no other number to 2011. It
follows from backwards induction that for x > n, f(x) = x. Therefore n > m, and there are only n−m
values of f that are not fixed.

Now f(m+ 1) = m or f(m+ 1) = m+ 1. For m < k < n,given the selection of f(1), f(2), . . . , f(k− 1),
k− 1 of the k+ 1 possible values of f(k+ 1) (1, 2, 3, . . . , k, and counting m twice) have been taken, so
there are two distinct values that f(k+ 1) can take (one of them is k+ 1, and the other is not, so they
are distinct). For f(n), when the other 2010 values of f have been assigned, there is only one missing,
so f(n) is determined.

For each integer in [m,n), there are two possible values of f , so there are 2n−m−1 different functions
f for a given m,n. So our answer is

2010∑
m=1

2011∑
n=m+1

2n−m−1 =

2010∑
m=1

2−m−1
2011∑

n=m+1

2n

=

2010∑
m=1

2−m−1(22012 − 2m+1)

=

2010∑
m=1

22011−m − 1

=

(
2010∑
m=1

2m

)
− 2010

= 22011 − 2012

16. Let f(x) = x2 − r2x + r3 for all real numbers x, where r2 and r3 are some real numbers. Define a
sequence {gn} for all nonnegative integers n by g0 = 0 and gn+1 = f(gn). Assume that {gn} satisfies
the following three conditions: (i) g2i < g2i+1 and g2i+1 > g2i+2 for all 0 ≤ i ≤ 2011; (ii) there exists
a positive integer j such that gi+1 > gi for all i > j, and (iii) {gn} is unbounded. If A is the greatest
number such that A ≤ |r2| for any function f satisfying these properties, find A.

Answer: 2

Consider the function f(x)−x. By the constraints of the problem, f(x)−x must be negative for some
x, namely, for x = g2i+1, 0 ≤ i ≤ 2011. Since f(x) − x is positive for x of large absolute value, the
graph of f(x)− x crosses the x-axis twice and f(x)− x has two real roots, say a < b. Factoring gives
f(x)− x = (x− a)(x− b), or f(x) = (x− a)(x− b) + x.

Now, for x < a, f(x) > x > a, while for x > b, f(x) > x > b. Let c 6= b be the number such that
f(c) = f(b) = b. Note that b is not the vertex as f(a) = a < b, so by the symmetry of quadratics, c
exists and b+c

2 = r2
2 as the vertex of the parabola. By the same token, b+a

2 = r2+1
2 is the vertex of

f(x)− x. Hence c = a− 1. If f(x) > b then x < c or x > b. Consider the smallest j such that gj > b.
Then by the above observation, gj−1 < c. (If gi ≥ b then f(gi) ≥ gi ≥ b so by induction, gi+1 ≥ gi for
all i ≥ j. Hence j > 1; in fact j ≥ 4025.) Since gj−1 = f(gj−2), the minimum value of f is less than c.
The minimum value is the value of f evaluated at its vertex, b+a−12 , so

f

(
b+ a− 1

2

)
< c(

b+ a− 1

2
− a
)(

b+ a− 1

2
− b
)

+
b+ a− 1

2
< a− 1

1− (b− a)2

4
+
b− a+ 1

2
< 0

3

4
<

(b− a)2

4
− b− a

2

4 < (b− a− 1)2.
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Then either b − a − 1 < −2 or b − a − 1 > 2, but b > a, so the latter must hold and (b − a)2 > 9.
Now, the discriminant of f(x) − x equals (b − a)2 (the square of the difference of the two roots) and
(r2 + 1)2 − 4r3 (from the coefficients), so (r2 + 1)2 > 9 + 4r3. But r3 = g1 > g0 = 0 so |r2| > 2.

We claim that we can make |r2| arbitrarily close to 2, so that the answer is 2. First define Gi, i ≥ 0
as follows. Let N ≥ 2012 be an integer. For ε > 0 let h(x) = x2 − 2 − ε, gε(x) = −

√
x+ 2 + ε and

G2N+1 = 2 + ε, and define Gi recursively by Gi = gε(Gi+1), Gi+1 = h(Gi). (These two equations are
consistent.) Note the following.

(i) G2i < G2i+1 andG2i+1 > G2i+2 for 0 ≤ i ≤ N−1. First noteG2N = −
√

4 + 2ε > −
√

4 + 2ε+ ε2 =
−2 − ε. Let l be the negative solution to h(x) = x. Note that −2 − ε < G2N < l < 0 since
h(G2N ) > 0 > G2N . Now gε(x) is defined as long as x ≥ −2− ε, and it sends (−2− ε, l) into (l, 0)
and (l, 0) into (−2− ε, l). It follows that the Gi, 0 ≤ i ≤ 2N are well-defined; moreover, G2i < l
and G2i+1 > l for 0 ≤ i ≤ N − 1 by backwards induction on i, so the desired inequalities follow.

(ii) Gi is increasing for i ≥ 2N + 1. Indeed, if x ≥ 2 + ε, then x2 − x = x(x− 1) > 2 + ε so h(x) > x.
Hence 2 + ε = G2N+1 < G2N+2 < · · · .

(iii) Gi is unbounded. This follows since h(x)− x = x(x− 2)− 2− ε is increasing for x > 2 + ε, so Gi
increases faster and faster for i ≥ 2N + 1.

Now define f(x) = h(x + G0) − G0 = x2 + 2G0x + G2
0 − G0 − 2 − ε. Note Gi+1 = h(Gi) while

gi+1 = f(gi) = h(gi + G0) − G0, so by induction gi = Gi − G0. Since {Gi}∞i=0 satisfies (i), (ii), and
(iii), so does gi.

We claim that we can make G0 arbitrarily close to −1 by choosing N large enough and ε small enough;
this will make r2 = −2G0 arbitrarily close to 2. Choosing N large corresponds to taking G0 to be a
larger iterate of 2 + ε under gε(x). By continuity of this function with respect to x and ε, it suffices to
take ε = 0 and show that (letting g = g0)

g(n)(2) = g(· · · g︸ ︷︷ ︸
n

(2) · · · )→ −1 as n→∞.

But note that for 0 ≤ θ ≤ π
2 ,

g(−2 cos θ) = −
√

2− 2 cos θ = −2 sin

(
θ

2

)
= 2 cos

(
π

2
− θ

2

)
.

Hence by induction, g(n)(−2 cos θ) = −2 cos
(
π
2 −

π
4 + · · ·+ (−1)n

(
θ − π

2n

))
. Hence g(n)(2) = g(n−1)(−2 cos 0)

converges to −2 cos(π2 −
π
4 + · · · ) = −2 cos(π3 ) = −1, as needed.

17. Let f : (0, 1) → (0, 1) be a differentiable function with a continuous derivative such that for every
positive integer n and odd positive integer a < 2n, there exists an odd positive integer b < 2n such
that f

(
a
2n

)
= b

2n . Determine the set of possible values of f ′
(
1
2

)
.

Answer: {−1, 1} The key step is to notice that for such a function f , f ′(x) 6= 0 for any x.

Assume, for sake of contradiction that there exists 0 < y < 1 such that f ′(y) = 0. Since f ′ is
a continuous function, there is some small interval (c, d) containing y such that |f ′(x)| ≤ 1

2 for all
x ∈ (c, d). Now there exists some n, a such that a

2n ,
a+1
2n are both in the interval (c, d). From the

definition,
f(a+1

2n )− f( a
2n )

a+1
2n −

a
2n

= 2n(
b′

2n
− b

2n
) = b′ − b where b, b′ are integers; one is odd, and one is

even. So b′ − b is an odd integer. Since f is differentiable, by the mean value theorem there exists a
point where f ′ = b′ − b. But this point is in the interval (c, d), and |b′ − b| > 1

2 . This contradicts the
assumption that |f ′(x)| ≤ 1

2 for all x ∈ (c, d).

Since f ′(x) 6= 0, and f ′ is a continuous function, f ′ is either always positive or always negative. So f is
either increasing or decreasing. f( 1

2 ) = 1
2 always. If f is increasing, it follows that f( 1

4 ) = 1
4 , f( 3

4 ) = 3
4 ,

and we can show by induction that indeed f( a
2n ) = a

2n for all integers a, n. Since numbers of this form
are dense in the interval (0, 1), and f is a continuous function, f(x) = x for all x.
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It can be similarly shown that if f is decreasing f(x) = 1− x for all x. So the only possible values of
f ′( 1

2 ) are −1, 1.

Query: if the condition that the derivative is continuous were omitted, would the same result still
hold?

18. Let n be an odd positive integer, and suppose that n people sit on a committee that is in the process
of electing a president. The members sit in a circle, and every member votes for the person either to
his/her immediate left, or to his/her immediate right. If one member wins more votes than all the
other members do, he/she will be declared to be the president; otherwise, one of the the members who
won at least as many votes as all the other members did will be randomly selected to be the president.
If Hermia and Lysander are two members of the committee, with Hermia sitting to Lysander’s left
and Lysander planning to vote for Hermia, determine the probability that Hermia is elected president,
assuming that the other n− 1 members vote randomly.

Answer: 2n−1
n2n−1 Let x be the probability Hermia is elected if Lysander votes for her, and let y be

the probability that she wins if Lysander does not vote for her. We are trying to find x, and do so
by first finding y. If Lysander votes for Hermia with probability 1

2 then the probability that Hermia
is elected chairman is x

2 + y
2 , but it is also 1

n by symmetry. If Lysander does not vote for Hermia,
Hermia can get at most 1 vote, and then can only be elected if everyone gets one vote and she wins the
tiebreaker. The probability she wins the tiebreaker is 1

n , and chasing around the circle, the probability
that every person gets 1 vote is 1

2n−1 . (Everyone votes for the person to the left, or everyone votes for
the person to the right.) Hence

y =
1

n2n−1
.

Then x
2 + 1

n2n = 1
n , so solving for x gives

x =
2n − 1

n2n−1
.

19. Let

F (x) =
1

(2− x− x5)2011
,

and note that F may be expanded as a power series so that F (x) =

∞∑
n=0

anx
n. Find an ordered pair of

positive real numbers (c, d) such that lim
n→∞

an
nd

= c.

Answer: ( 1
620112010! , 2010)

First notice that all the roots of 2 − x − x5 that are not 1 lie strictly outside the unit circle. As
such, we may write 2− x− x5 as 2(1− x)(1− r1x)(1− r2x)(1− r3x)(1− r4x) where |ri| < 1, and let

1
(2−x−x5) = b0

(1−x) + b1
(1−r1x) + . . .+ b4

(1−r4x) . We calculate b0 as limx→1
(1−x)

(2−x−x5) = limx→1
(−1)

(−1−5x4) = 1
6 .

Now raise the equation above to the 2011th power.

1

(2− x− x5)2011
=

(
1/6

(1− x)
+

b1
(1− r1x)

+ . . .+
b4

(1− r4x)

)2011

Expand the right hand side using multinomial expansion and then apply partial fractions. The result
will be a sum of the terms (1− x)−k and (1− rix)−k, where k ≤ 2011.

Since |ri| < 1, the power series of (1− rix)−k will have exponentially decaying coefficients, so we only
need to consider the (1−x)−k terms. The coefficient of xn in the power series of (1−x)−k is

(
n+k−1
k−1

)
,

which is a (k − 1)th degree polynomial in variable n. So when we sum up all coefficients, only the
power series of (1− x)−2011 will have impact on the leading term n2010.
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The coefficient of the (1 − x)−2011 term in the multinomial expansion is ( 1
6 )2011. The coefficient of

the xn term in the power series of (1 − x)−2011 is
(
n+2010
2010

)
= 1

2010!n
2010 + . . .. Therefore, (c, d) =

( 1
620112010! , 2010).

20. Alice and Bob play a game in which two thousand and eleven 2011×2011 grids are distributed between
the two of them, 1 to Bob, and the other 2010 to Alice. They go behind closed doors and fill their
grid(s) with the numbers 1, 2, . . . , 20112 so that the numbers across rows (left-to-right) and down
columns (top-to-bottom) are strictly increasing. No two of Alice’s grids may be filled identically. After
the grids are filled, Bob is allowed to look at Alice’s grids and then swap numbers on his own grid,
two at a time, as long as the numbering remains legal (i.e. increasing across rows and down columns)
after each swap. When he is done swapping, a grid of Alice’s is selected at random. If there exist two
integers in the same column of this grid that occur in the same row of Bob’s grid, Bob wins. Otherwise,
Alice wins. If Bob selects his initial grid optimally, what is the maximum number of swaps that Bob
may need in order to guarantee victory?

Answer: 1

Consider the grid whose entries in the jth row are, in order, 2011j−2010, 2011j−2009, . . . , 2011j. Call
this grid A0. For k = 1, 2 . . . , 2010, let grid Ak be the grid obtained from A0 by swapping the rightmost
entry of the kth row with the leftmost entry of the k+1st row. We claim that if A ∈ {A0, A1, . . . , A2010},
then given any legally numbered grid B such that A and B differ in at least one entry, there exist two
integers in the same column of B that occur in the same row of A.
We first consider A0. Assume for the sake of contradiction B is a legally numbered grid distinct from
A0, such that there do not exist two integers in the same column of B that occur in the same row
of A0. Since the numbers 1, 2, . . . , 2011 occur in the same row of A0, they must all occur in different
columns of B. Clearly 1 is the leftmost entry in B’s first row. Let m be the smallest number that does
not occur in the first row of B. Since each row is in order, m must be the first entry in its row. But
then 1 and m are in the same column of B, a contradiction. It follows that the numbers 1, 2, . . . , 2011
all occur in the first row of B. Proceeding by induction, 2011j−2010, 2011j−2009, . . . , 2011j must all
occur in the jth row of B for all 1 ≤ j ≤ 2011. Since A0 is the only legally numbered grid satsifying
this condition, we have reached the desired contradiction.
Now note that if A ∈ {A1, . . . , A2010}, there exist two integers in the same column of A0 that occur in
the same row of A. In particular, if A = Ak and 1 ≤ k ≤ 2010, then the integers 2011k − 2010 and
2011k + 1 occur in the same column of A0 and in the same row of Ak. Therefore, it suffices to show
that for all 1 ≤ k ≤ 2010, there is no legally numbered grid B distinct from Ak and A0 such that there
do not exist two integers in the same column of B that occur in the same row of A0. Assume for the
sake of contradiction that there does exist such a grid B. By the same logic as above, applied to the
first k−1 rows and applied backwards to the last 2010−k−1 rows, we see that B may only differ from
Ak in the kth and k+ 1st rows. However, there are only two legally numbered grids that are identical
to Ak outside of rows k and k + 1, namely A0 and Ak. This proves the claim.
It remains only to note that, by the pigeonhole principle, if one of Alice’s grids is A0, then there exists
a positive integer k, 1 ≤ k ≤ 2010, such that Ak is not one of the Alice’s grids. Therefore, if Bob sets
his initial grid to be A0, he will require only one swap to switch his grid to Ak after examining Alice’s
grids. If A0 is not among Alice’s grids, then if Bob sets his initial grid to be A0, he will not in fact
require any swaps at all.
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