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Algebra Test

1. Let x and y be real numbers with x > y such that x2y2 +x2 + y2 +2xy = 40 and xy +x+ y = 8. Find
the value of x.

Answer: 3 +
√

7 We have (xy)2 + (x + y)2 = 40 and xy + (x + y) = 8. Squaring the second

equation and subtracting the first gives xy(x + y) = 12 so xy, x + y are the roots of the quadratic
a2−8a+12 = 0. It follows that {xy, x+y} = {2, 6}. If x+y = 2 and xy = 6, then x, y are the roots of
the quadratic b2−2b+6 = 0, which are non-real, so in fact x+y = 6 and xy = 2, and x, y are the roots

of the quadratic b2 − 6b + 2 = 0. Because x > y, we take the larger root, which is 6+
√

28
2 = 3 +

√
7.

2. Let {an}n≥1 be an arithmetic sequence and {gn}n≥1 be a geometric sequence such that the first four
terms of {an + gn} are 0, 0, 1, and 0, in that order. What is the 10th term of {an + gn}?
Answer: −54 Let the terms of the geometric sequence be a, ra, r2a, r3a. Then, the terms of

the arithmetic sequence are −a,−ra,−r2a + 1,−r3a. However, if the first two terms of this sequence
are −a,−ra, the next two terms must also be (−2r + 1)a, (−3r + 2)a. It is clear that a 6= 0 because
a3 +g3 6= 0, so −r3 = −3r+2 ⇒ r = 1 or −2. However, we see from the arithmetic sequence that r = 1
is impossible, so r = −2. Finally, by considering a3, we see that −4a + 1 = 5a, so a = 1/9. We also
see that an = (3n− 4)a and gn = (−2)n−1a, so our answer is a10 + g10 = (26− 512)a = −486a = −54.

3. Let S be the set of integers of the form 2x + 2y + 2z, where x, y, z are pairwise distinct non-negative
integers. Determine the 100th smallest element of S.

Answer: 577 S is the set of positive integers with exactly three ones in its binary representation.

The number of such integers with at most d total bits is
(

d
3

)

, and noting that
(

9
3

)

= 84 and
(

10
3

)

= 120,
we want the 16th smallest integer of the form 29 + 2x + 2y, where y < x < 9. Ignoring the 29 term,

there are
(

d′

2

)

positive integers of the form 2x + 2y with at most d′ total bits. Because
(

6
2

)

= 15, our
answer is 29 + 26 + 20 = 577. (By a bit, we mean a digit in base 2.)

4. Determine all real values of A for which there exist distinct complex numbers x1, x2 such that the
following three equations hold:

x1(x1 + 1) = A

x2(x2 + 1) = A

x4
1 + 3x3

1 + 5x1 = x4
2 + 3x3

2 + 5x2.

Answer: −7 Applying polynomial division,

x4
1 + 3x3

1 + 5x1 = (x2
1 + x1 − A)(x2

1 + 2x1 + (A − 2)) + (A + 7)x1 + A(A − 2)

= (A + 7)x1 + A(A − 2).

Thus, in order for the last equation to hold, we need (A+7)x1 = (A+7)x2, from which it follows that
A = −7. These steps are reversible, so A = −7 indeed satisfies the needed condition.

5. Let a and b be real numbers, and let r, s, and t be the roots of f(x) = x3 + ax2 + bx − 1. Also,
g(x) = x3 + mx2 + nx + p has roots r2, s2, and t2. If g(−1) = −5, find the maximum possible value
of b.

Answer: 1 +
√

5 By Vieta’s Formulae, m = −(r2 + s2 + t2) = −a2 + 2b, n = r2s2 + s2t2 + t2r2 =

b2 + 2a, and p = −1. Therefore, g(−1) = −1 − a2 + 2b − b2 − 2a − 1 = −5 ⇔ (a + 1)2 + (b − 1)2 = 5.
This is an equation of a circle, so b reaches its maximum when a + 1 = 0 ⇒ a = −1. When a = −1,
b = 1 ±

√
5, so the maximum is 1 +

√
5.
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6. Find the number of integers n such that

1 +

⌊

100n

101

⌋

=

⌈

99n

100

⌉

.

Answer: 10100 Consider f(n) = ⌈ 99n
100 ⌉ − ⌊ 100n

101 ⌋. Note that f(n + 10100) = ⌈ 99n
100 + 99 · 101⌉ −

⌊ 100n
101 + 1002⌋ = f(n) + 99 · 101− 1002 = f(n)− 1. Thus, for each residue class r modulo 10100, there

is exactly one value of n for which f(n) = 1 and n ≡ r (mod 10100). It follows immediately that the
answer is 10100.

7. Compute
∞
∑

a1=0

∞
∑

a2=0

· · ·
∞
∑

a7=0

a1 + a2 + · · · + a7

3a1+a2+···+a7

.

Answer: 15309/256 Note that, since this is symmetric in a1 through a7,

∞
∑

a1=0

∞
∑

a2=0

· · ·
∞
∑

a7=0

a1 + a2 + · · · + a7

3a1+a2+···+a7

= 7

∞
∑

a1=0

∞
∑

a2=0

· · ·
∞
∑

a7=0

a1

3a1+a2+···+a7

= 7

( ∞
∑

a1=0

a1

3a1

) ( ∞
∑

a=0

1

3a

)6

.

If S =
∑

a
3a , then 3S−S =

∑

1
3a = 3/2, so S = 3/4. It follows that the answer equals 7· 34 ·

(

3
2

)6
= 15309

256 .

Alternatively, let f(z) =
∑∞

a1=0

∑∞
a2=0 · · ·

∑∞
a7=0 za1+a2+···+a7 . Note that we can rewrite f(z) =

(
∑∞

a=0 za)7 = 1
(1−z)7 . Furthermore, note that zf ′(z) =

∑∞
a1=0

∑∞
a2=0 · · ·

∑∞
a7=0(a1 + a2 + · · · +

a7)z
a1+a2+···+a7 , so the sum in question is simply f ′(1/3)

3 . Since f ′(x) = 7
(1−z)8 , it follows that the sum

is equal to 7·37

28 = 15309
256 .

8. Let x, y be complex numbers such that x2+y2

x+y = 4 and x4+y4

x3+y3 = 2. Find all possible values of x6+y6

x5+y5 .

Answer: 10 ± 2
√

17 Let A = 1
x + 1

y and let B = x
y + y

x . Then

B

A
=

x2 + y2

x + y
= 4,

so B = 4A. Next, note that

B2 − 2 =
x4 + y4

x2y2
and AB − A =

x3 + y3

x2y2
,

so

B2 − 2

AB − A
= 2.

Substituting B = 4A and simplifying, we find that 4A2 +A−1 = 0, so A = −1±
√

17
8 . Finally, note that

64A3 − 12A = B3 − 3B =
x6 + y6

x3y3
and 16A3 − 4A2 − A = A(B2 − 2) − (AB − A) =

x5 + y5

x3y3
,

so
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x6 + y6

x5 + y5
=

64A2 − 12

16A2 − 4A − 1
=

4 − 16A

3 − 8A
,

where the last inequality follows from the fact that 4A2 = 1−A. If A = −1+
√

17
8 , then this value equals

10 + 2
√

17. Similarly, if A = −1−
√

17
8 , then this value equals 10 − 2

√
17.

(It is not hard to see that these values are achievable by noting that with the values of A and B we
can solve for x + y and xy, and thus for x and y.)

9. Let z be a non-real complex number with z23 = 1. Compute

22
∑

k=0

1

1 + zk + z2k
.

Answer: 46/3 First solution: Note that

22
∑

k=0

1

1 + zk + z2k
=

1

3
+

22
∑

k=1

1 − zk

1 − z3k
=

1

3
+

22
∑

k=1

1 − (z24)k

1 − z3k
=

1

3
+

22
∑

k=1

7
∑

ℓ=0

z3kℓ.

3 and 23 are prime, so every non-zero residue modulo 23 appears in an exponent in the last sum exactly
7 times, and the summand 1 appears 22 times. Because the sum of the 23rd roots of unity is zero, our
answer is 1

3 + (22 − 7) = 46
3 .

Second solution: For an alternate approach, we first prove the following identity for an arbitrary
complex number a:

22
∑

k=0

1

a − zk
=

23a22

a23 − 1
.

To see this, let f(x) = x23 − 1 = (x − 1)(x − z)(x − z2) . . . (x − z22). Note that the sum in question is

merely f ′(a)
f(a) , from which the identity follows.

Now, returning to our orignal sum, let ω 6= 1 satisfy ω3 = 1. Then

22
∑

k=0

1

1 + zk + z2k
=

1

ω2 − ω

22
∑

k=0

1

ω − zk
− 1

ω2 − zk

=
1

ω2 − ω

(

22
∑

k=0

1

ω − zk
−

22
∑

k=0

1

ω2 − zk

)

=
1

ω2 − ω

(

23ω22

ω23 − 1
− 23ω44

ω46 − 1

)

=
23

ω2 − ω

(

ω

ω2 − 1
− ω2

ω − 1

)

=
23

ω2 − ω

(ω2 − ω) − (ω − ω2)

2 − ω − ω2

=
46

3
.

10. Let N be a positive integer whose decimal representation contains 11235 as a contiguous substring,
and let k be a positive integer such that 10k > N . Find the minimum possible value of
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10k − 1

gcd(N, 10k − 1)
.

Answer: 89 Set m = 10k−1
gcd(N,10k−1)

. Then, in lowest terms, N
10k−1

= a
m for some integer a. On the

other hand, the decimal expansion of N
10k−1

simply consists of the decimal expansion of N , possibly
with some padded zeros, repeating. Since N contains 11235 as a contiguous substring, the decimal
representation of a

m must as well.

Conversely, if m is relatively prime to 10 and if there exists an a such that the decimal representation

of a
m contains the substring 11235, we claim that m is an attainable value for 10k−1

gcd(N,10k−1)
. To see

this, note that since m is relatively prime to 10, there exists a value of k such that m divides 10k − 1
(for example, k = φ(m)). Letting ms = 10k − 1 and N = as, it follows that a

m = as
ms = N

10k−1
. Since

the decimal expansion of this fraction contains the substring 11235, it follows that N must also, and
therefore m is an attainable value.

We are therefore looking for a fraction a
m which contains the substring 11235 in its decimal expansion.

Since 1, 1, 2, 3, and 5 are the first five Fibonacci numbers, it makes sense to look at the value of the
infinite series

∞
∑

i=1

Fi

10i
.

A simple generating function argument shows that
∑∞

i=1 Fix
i = x

1−x−x2 , so substituting x = 1/10
leads us to the fraction 10/89 (which indeed begins 0.11235 . . . ).

How do we know no smaller values of m are possible? Well, if a′/m′ contains the substring 11235
somewhere in its infinitely repeating decimal expansion, then note that there is an i such that the
decimal expansion of the fractional part of 10i(a′/m′) begins with 0.11235 . . . . We can therefore,
without loss of generality, assume that the decimal representation of a′/m′ begins 0.11235 . . . . But
since the decimal representation of 10/89 begins 0.11235 . . . , it follows that

∣

∣

∣

∣

10

89
− a′

m′

∣

∣

∣

∣

≤ 10−5.

On the other hand, this absolute difference, if non-zero, is at least 1
89m′

. If m′ < 89, this is at least
1

892 > 10−5, and therefore no smaller values of m′ are possible.
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