
HMMT 2013
Saturday 16 February 2013

Combinatorics Test

1. A standard 52-card deck contains cards of 4 suits and 13 numbers, with exactly one card for each
pairing of suit and number. If Maya draws two cards with replacement from this deck, what is the
probability that the two cards have the same suit or have the same number, but not both?

Answer: 15
52 After drawing the first card, there are 12 other cards from the same suit and 3 other

cards with the same number, so the probability is 12+3
52 .

2. If Alex does not sing on Saturday, then she has a 70% chance of singing on Sunday; however, to rest
her voice, she never sings on both days. If Alex has a 50% chance of singing on Sunday, find the
probability that she sings on Saturday.

Answer: 2
7 Let p be the probability that Alex sings on Saturday. Then, the probability that she

sings on Sunday is .7(1 − p); setting this equal to .5 gives p = 2
7 .

3. On a game show, Merble will be presented with a series of 2013 marbles, each of which is either red or
blue on the outside. Each time he sees a marble, he can either keep it or pass, but cannot return to a
previous marble; he receives 3 points for keeping a red marble, loses 2 points for keeping a blue marble,
and gains 0 points for passing. All distributions of colors are equally likely and Merble can only see
the color of his current marble. If his goal is to end with exactly one point and he plays optimally,
what is the probability that he fails?

Answer: 1
22012 First, we note that if all the marbles are red or all are blue, then it is impossible

for Merble to win; we claim that he can guarantee himself a win in every other case. In particular, his
strategy should be to keep the first red and first blue marble that he encounters, and to ignore all the
others. Consequently, the probability that he cannot win is 2

22013 = 1
22012 .

4. How many orderings (a1, . . . , a8) of (1, 2, . . . , 8) exist such that a1−a2+a3−a4+a5−a6+a7−a8 = 0?

Answer: 4608 We can divide the numbers up based on whether they have a + or - before
them. Both the numbers following +’s and -’s must add up to 18. Without loss of generality, we can
assume the +’s contain the number 1 (and add a factor of 2 at the end to account for this). The
possible 4-element sets containing a 1 which add to 18 are {1, 2, 7, 8}, {1, 3, 6, 8}, {1, 4, 5, 8}, {1, 4, 6, 7}.
Additionally, there are 4! ways to order the numbers following a + and 4! ways to order the numbers
following a −. Thus the total number of possibilities is 4 × 2 × 4! × 4! = 4608.

5. At a certain chocolate company, each bar is 1 unit long. To make the bars more interesting, the
company has decided to combine dark and white chocolate pieces. The process starts with two bars,
one completely dark and one completely white. At each step of the process, a new number p is chosen
uniformly at random between 0 and 1. Each of the two bars is cut p units from the left, and the pieces
on the left are switched: each is grafted onto the opposite bar where the other piece of length p was
previously attached. For example, the bars might look like this after the first step:

0 p 1
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Each step after the first operates on the bars resulting from the previous step. After a total of
100 steps, what is the probability that on each bar, the chocolate 1/3 units from the left is the same
type of chocolate as that 2/3 units from the left?

Answer: 1
2

[

(

1
3

)100
+ 1

]

If the values of p chosen are p1, . . . , p100, then note that the color of a

bar changes at each value of pi. Consequently, we want to find the probability that exactly an even
number of pi are in (1

3 , 2
3 ). Summing, this is equal to
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+
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.

To compute, we note that this is equal to

1

2

[

(

2

3
+

1

3

)100

+

(

2

3
−

1

3

)100
]

after expanding using the binomial theorem, since any terms with odd exponents are cancelled out
between the two terms.

6. Values a1, . . . , a2013 are chosen independently and at random from the set {1, . . . , 2013}. What is
expected number of distinct values in the set {a1, . . . , a2013}?

Answer: 20132013−20122013

20132012 For each n ∈ {1, 2, . . . , 2013}, let Xn = 1 if n appears in {a1, a2, . . . , a2013}

and 0 otherwise. Defined this way, E[Xn] is the probability that n appears in {a1, a2, . . . , a2013}. Since
each ai (1 ≤ i ≤ 2013) is not n with probability 2012/2013, the probability that n is none of the

ai’s is
(

2012
2013

)2013
, so E[Xn], the probability that n is one of the ai’s, is 1 −

(

2012
2013

)2013
. The ex-

pected number of distinct values in {a1, . . . , a2013} is the expected number of n ∈ {1, 2, . . . , 2013}
such that Xn = 1, that is, the expected value of X1 + X2 + · · · + X2013. By linearity of expectation,

E[X1 + X2 + · · · + X2013] = E[X1] + E[X2] + · · · + E[Xn] = 2013
(

1 −
(

2012
2013

)2013
)

= 20132013−20122013

20132012 .

7. A single-elimination ping-pong tournament has 22013 players, seeded in order of ability. If the player
with seed x plays the player with seed y, then it is possible for x to win if and only if x ≤ y + 3. For
how many players P it is possible for P to win? (In each round of a single elimination tournament, the
remaining players are randomly paired up; each player plays against the other player in his pair, with
the winner from each pair progressing to the next round and the loser eliminated. This is repeated
until there is only one player remaining.)

Answer: 6038 We calculate the highest seed n that can win. Below, we say that a player x
vicariously defeats a player y if x defeats y directly or indirectly through some chain (i.e. x defeats x1,
who defeated x2, . . ., who defeated xn, who defeated y for some players x1, . . . , xn).

We first consider the highest seeds that are capable of making the semifinals. The eventual winner
must be able to beat two of these players and thus must be able to beat the second best player in the
semifinals. The seed of the player who vicariously beats the 1-seed is maximized if 1 loses to 4 in the
first round, 4 to 7 in the second round, etc. Therefore 3 · 2011 + 1 = 6034 is the maximum value of
the highest seed in the semifinals. If 1, and 2 are in different quarters of the draw, then by a similar
argument 6035 is the largest possible value of the second best player in the semis, and thus 6038 is
the highest that can win. If 1 and 2 are in the same quarter, then in one round the highest remaining
seed will not be able to go up by 3, when the player who has vicariously beaten 1 plays the player who
vicariously beat 2, so 3 · 2011− 1 = 6032 is the highest player the semifinalist from that quarter could
be. But then the eventual winner still must be seeded at most 6 above this player, and thus 6038 is
still the upper bound.

Therefore 6038 is the worst seed that could possibly win, and can do so if 6034, 6035, 6036, 6038 all
make the semis, which is possible (it is not difficult to construct such a tournament). Then, note that
any player x with a lower seed can also win for some tournament – in particular, it suffices to take
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the tournament where it is possible for player 6038 to win and switch the positions of 6038 and x.
Consequently, there are 6038 players for whom it is possible to win under some tournament.

8. It is known that exactly one of the three (distinguishable) musketeers stole the truffles. Each musketeer
makes one statement, in which he either claims that one of the three is guilty, or claims that one of the
three is innocent. It is possible for two or more of the musketeers to make the same statement. After
hearing their claims, and knowing that exactly one musketeer lied, the inspector is able to deduce who
stole the truffles. How many ordered triplets of statements could have been made?

Answer: 99 We divide into cases, based on the number of distinct people that statements are
made about.

• The statements are made about 3 distinct people. Then, since exactly one person is guilty, and
because exactly one of the three lied, there are either zero statements of guilt or two statements of
guilt possible; in either case, it is impossible by symmetry to determine who is guilty or innocent.

• The statements are made about 2 distinct people or 1 distinct person. Then, either at least two
of the statements are the same, or all are different.

– If two statements are the same, then those two statements must be true because only one
musketeer lied. Consequently, the lone statement must be false. If all the statements are
about the same person, there there must be 2 guilty claims and 1 innocence claim (otherwise
we would not know which of the other two people was guilty). Then, there are 3 choices for
who the statement is about and 3 choices for who makes the innocence claim, for a 3 · 3 = 9
triplets of statements. Meanwhile, if the statements are about two different people, then this
is doable unless both of the distinct statements imply guilt for the person concerned (i.e.
where there are two guilty accusations against one person and one claim of innocence against
another). Consequently, there are 3 sets of statements that can be made, 3 · 2 = 6 ways to
determine who they are made about, and 3 ways to determine who makes which statement,
for a total of 3 · 6 · 3 = 54 triplets in this case.

– If all the statements are different, then they must be about two different people. Here, there
must be one person, who we will call A, who has both a claim of innocence and an accusation
of guilt against him. The last statement must concern another person, B. If the statement
accuses B of being guilty, then we can deduce that he is the guilty one. On the other hand, if
the statement claims that B is innocent, either of the other two musketeers could be guilty.
Consequently, there are 3 · 2 = 6 ways to choose A and B, and 3! = 6 ways to choose who
makes which statement, for a total of 6 · 6 = 36 triplets of statements.

In total, we have 9 + 54 + 36 = 99 possible triplets of statements.

9. Given a permutation σ of {1, 2, . . . , 2013}, let f(σ) to be the number of fixed points of σ – that is,
the number of k ∈ {1, 2, . . . , 2013} such that σ(k) = k. If S is the set of all possible permutations σ,
compute

∑

σ∈S

f(σ)4.

(Here, a permutation σ is a bijective mapping from {1, 2, . . . , 2013} to {1, 2, . . . , 2013}.)

Answer: 15(2013!) First, note that

∑

σ∈S

f(σ)4 =
∑

σ∈S

∑

1≤a1,a2,a3,a4≤2013

g(σ, a1, a2, a3, a4),

where g(σ, a1, a2, a3, a4) = 1 if all ai are fixed points of σ and 0 otherwise. (The ai’s need not be
distinct.) Switching the order of summation, we find that the desired sum is

∑

1≤a1,a2,a3,a4≤2013

∑

σ∈S

g(σ, a1, a2, a3, a4).
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Note that the inner sum is equal to the number of permutations on {1, 2, . . . , 2013} that fix a1, a2, a3,
and a4. This depends on the number of distinct values the ais take. If they take on exactly k distinct
values, then the inner sum will evaluate to (2013 − k)!, because σ can be any permutation of the
remaining 2013 − k elements. (For example, if a1 = a2 but a1, a3, and a4 are distinct, the inner sum
is 2010! because σ can be any permutation that fixes a1, a3, and a4.)

Now, suppose we are given which of the ai are equal (for example, we could be given a1 = a2 but
a1, a3, a4 mutually distinct, as per the above example). Assuming there are k distinct values among
the ai, there are 2013(2013 − 1) · · · (2013 − k + 1) ways to choose the ai. At this point, there are
(2013 − k)! ways to choose σ on the remaining (2013 − k) values such that it fixes the ai, for a total
of 2013! choices for (σ, a1, a2, a3, a4) such that g(σ, a1, a2, a3, a4) = 1 and the ai satisfy the correct
equality relations.

Thus the answer is 2013! times the number of ways to choose equivalence classes on the ai, so the
problem reduces to finding the number of ways to partition 4 elements into nonempty sets. This
process can be accelerated by doing casework based on the number of sets:

(a) One set must contain all four elements, only one possibility. (i.e. all the ais are equal)

(b) Either one set contains 3 elements and the other contains the fourth (4 possibilities) or one set
contains 2 elements and the other contains the other two (3 possibilities). (i.e. there are two
distinct values of ai)

(c) One set contains two elements, the other two each contain one. There are
(

4
2

)

= 6 ways to choose
the two elements in the set with two elements, and this uniquely determines the partition. (i.e.
there are three distinct values of ai)

(d) All sets contain one element, in which case there is only one possibility. (i.e. all the ai are distinct)

Thus the number of ways to construct such a partition is 1 + 4 + 3 + 6 + 1 = 15, and our answer is
15 · 2013!.

10. Rosencrantz and Guildenstern each start with $2013 and are flipping a fair coin. When the coin
comes up heads Rosencrantz pays Guildenstern $1 and when the coin comes up tails Guildenstern pays
Rosencrantz $1. Let f(n) be the number of dollars Rosencrantz is ahead of his starting amount after
n flips. Compute the expected value of max{f(0), f(1), f(2), . . . , f(2013)}.

Answer: −1
2 +

(1007)(2013

1006)
22012 We want to calculate Γ =

∞
∑

i=0

i · P (max profit=i), where we consider

the maximum profit Rosencrantz has at any point over the first 2013 coin flips. By summation by

parts this is equal to
2013
∑

a=1

P (max profit ≥ a).

Let pa be the probability that Rosencrantz’ max profit is at least a and let En,a be the set of sequences
of flips such that Rosencrantz first reaches a profit of a on exactly the nth flip. Let Q+

a , Q−
a , Qa be the

sets such that after all 2013 flips Rosencrantz’ final profit is (respectively) greater than, less than, or
equal to a.

Then,

Γ =

2013
∑

a=1

P (max profit ≥a)

=

2013
∑

a=1

2013
∑

n=a

P (En,a)

=
2013
∑

a=1

2013
∑

n=a

P (En,a ∩ Q+
a ) + P (En,a ∩ Q−

a ) + P (En,a ∩ Qa).

By symmetry, P (En,a ∩ Q+
a ) = P (En,a ∩ Q−

a ) because, for any sequence in En,a ∩ Q+
a , we can reverse

all the flips after the nth flip to get a sequence in En,a ∩ Q−
a , and vice-versa.
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Furthermore,

2013
∑

n=a

P (En,a ∩ Q+
a ) = P (Q+

a ) and

2013
∑

n=a

P (En,a ∩ Qa) = P (Qa).

So we have
2013
∑

a=1

P (max profit ≥a) =

2013
∑

a=1

(

P (Qa) + 2P (Q+
a )

)

.

Since by symmetry P (Qa) = P (Q−a) and we have an odd number of flips, we have

2013
∑

a=1

P (Qa) =
1

2
.

Also P (Q+
a ) =

1

22013

2013
∑

k=⌈ 2014+a

2 ⌉

(

2013

k

)

.

So the rest is just computation. We have:

Γ =
1

2
+

1

22012

2013
∑

a=1

2013
∑

k=⌈ 2014+a

2 ⌉

(

2013

k

)

=
1

2
+

1

22012

2013
∑

k=1008

2k−2014
∑

a=1

(

2013

k

)

=
1

2
+

1

22012

2013
∑

k=1008

(

2013

k

)

(k + k − 2013 − 1)

=
1

2
+

1

22012

2013
∑

k=1008

2013

(

2012

k − 1

)

− 2013

(

2012

k

)

−

(

2013

k

)

=
1

2
+

2013
(

2012
1007

)

− 22012 +
(

2013
1007

)

22012

=
−1

2
+

(1007)
(

2013
1006

)

22012
.

So the answer is −1
2 +

(1007)(2013

1006)
22012 (for reference, approximately 35.3).
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