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1. [4] Arpon chooses a positive real number k. For each positive integer n, he places a marker at the point
(n, nk) in the (x, y) plane. Suppose that two markers whose x coordinates differ by 4 have distance
31. What is the distance between the markers at (7, 7k) and (19, 19k)?

Answer: 93 The difference of the x-coordinates of the markers is 12 = 3 · 4. Thus, by similar
triangles (where we draw right triangles whose legs are parallel to the axes and whose hypotenuses lie
along the line y = kx), the distance between the markers is 3 · 31 = 93.

2. [4] The real numbers x, y, z satisfy 0 ≤ x ≤ y ≤ z ≤ 4. If their squares form an arithmetic progression
with common difference 2, determine the minimum possible value of |x − y| + |y − z|.

Answer: 4 − 2
√

3 Clearly |x−y|+ |y− z| = z−x = z2−x2

z+x
= 4

z+x
, which is minimized when z = 4

and x =
√

12. Thus, our answer is 4 −
√

12 = 4 − 2
√

3.

3. [4] Find the rightmost non-zero digit of the expansion of (20)(13!).

Answer: 6 We can rewrite this as (10 ∗ 2)(13 ∗ 12 ∗ 11 ∗ 10 ∗ 9 ∗ 8 ∗ 7 ∗ 6 ∗ 5 ∗ 4 ∗ 3 ∗ 2 ∗ 1) =
(103)(2 ∗ 13 ∗ 12 ∗ 11 ∗ 9 ∗ 8 ∗ 7 ∗ 6 ∗ 4 ∗ 3); multiplying together the units digits for the terms not equal
to 10 reveals that the rightmost non-zero digit is 6.

4. [4] Spencer is making burritos, each of which consists of one wrap and one filling. He has enough
filling for up to four beef burritos and three chicken burritos. However, he only has five wraps for the
burritos; in how many orders can he make exactly five burritos?

Answer: 25 Spencer’s burrito-making can include either 3, 2, or 1 chicken burrito; consequently,

he has
(

5
3

)

+
(

5
2

)

+
(

5
1

)

= 25 orders in which he can make burritos.

5. [5] Rahul has ten cards face-down, which consist of five distinct pairs of matching cards. During each
move of his game, Rahul chooses one card to turn face-up, looks at it, and then chooses another to
turn face-up and looks at it. If the two face-up cards match, the game ends. If not, Rahul flips both
cards face-down and keeps repeating this process. Initially, Rahul doesn’t know which cards are which.
Assuming that he has perfect memory, find the smallest number of moves after which he can guarantee
that the game has ended.

Answer: 4 Label the 10 cards a1, a2, ..., a5, b1, b2, ..., b5 such that ai and bi match for 1 ≤ i ≤ 5.

First, we’ll show that Rahul cannot always end the game in less than 4 moves, in particular, when
he turns up his fifth card (during the third move), it is possible that the card he flips over is not one
which he has yet encountered; consequently, he will not guarantee being able to match it, so he cannot
guarantee that the game can end in three moves.

However, Rahul can always end the game in 4 moves. To do this, he can turn over 6 distinct cards in
his first 3 moves. If we consider the 5 sets of cards {a1, b1}, {a2, b2}, {a3, b3}, {a4, b4}, {a5, b5}, then by
the pigeonhole principle, at least 2 of the 6 revealed cards must be from the same set. Rahul can then
turn over those 2 cards on the fourth move, ending the game.

6. [5] Let R be the region in the Cartesian plane of points (x, y) satisfying x ≥ 0, y ≥ 0, and x + y +
⌊x⌋ + ⌊y⌋ ≤ 5. Determine the area of R.

Answer: 9
2 We claim that a point in the first quadrant satisfies the desired property if the point

is below the line x + y = 3 and does not satisfy the desired property if it is above the line.

To see this, for a point inside the region, x+ y < 3 and ⌊x⌋+ ⌊y⌋ ≤ x+ y < 3 However, ⌊x⌋+ ⌊y⌋ must
equal to an integer. Thus, ⌊x⌋ + ⌊y⌋ ≤ 2. Adding these two equations, x + y + ⌊x⌋ + ⌊y⌋ < 5, which
satisfies the desired property. Conversely, for a point outside the region, ⌊x⌋+⌊y⌋+{x}+{y} = x+y > 3
However, {x} + {y} < 2. Thus, ⌊x⌋ + ⌊y⌋ > 1, so ⌊x⌋ + ⌊y⌋ ≥ 2, implying that x + y + ⌊x⌋ + ⌊y⌋ > 5.
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To finish, R is the region bounded by the x-axis, the y-axis, and the line x + y = 3 is a right triangle
whose legs have length 3. Consequently, R has area 9

2 .

7. [5] Find the number of positive divisors d of 15! = 15 · 14 · · · · · 2 · 1 such that gcd(d, 60) = 5.

Answer: 36 Since gcd(d, 60) = 5, we know that d = 5id′ for some integer i > 0 and some integer
d′ which is relatively prime to 60. Consequently, d′ is a divisor of (15!)/5; eliminating common factors
with 60 gives that d′ is a factor of (72)(11)(13), which has (2 + 1)(1 + 1)(1 + 1) = 12 factors. Finally,
i can be 1, 2, or 3, so there are a total of 3 · 12 = 36 possibilities.

8. [5] In a game, there are three indistinguishable boxes; one box contains two red balls, one contains two
blue balls, and the last contains one ball of each color. To play, Raj first predicts whether he will draw
two balls of the same color or two of different colors. Then, he picks a box, draws a ball at random,
looks at the color, and replaces the ball in the same box. Finally, he repeats this; however, the boxes
are not shuffled between draws, so he can determine whether he wants to draw again from the same
box. Raj wins if he predicts correctly; if he plays optimally, what is the probability that he will win?

Answer: 5
6 Call the box with two red balls box 1, the box with one of each color box 2, and the

box with two blue balls box 3. Without loss of generality, assume that the first ball that Bob draws is
red. If Bob picked box 1, then he would have picked a red ball with probability 1, and if Bob picked
box 2, then he would have picked a red ball with probability 1

2 . Therefore, the probability that he
picked box 1 is 1

1+ 1
2

= 2
3 , and the probability that he picked box 2 is 1

3 . We will now consider both

possible predictions and find which one gives a better probability of winning, assuming optimal play.

If Bob predicts that he will draw two balls of the same color, then there are two possible plays: he
draws from the same box, or he draws from a different box. If he draws from the same box, then in the
2
3 chance that he originally picked box 1, he will always win, and in the 1

3 chance that he picked box
2, he will win with probability 1

2 , for a total probability of 2
3 + 1

3 · 1
2 = 5

6 . If he draws from a different
box, then if he originally picked box 1, he will win with probability 1

4 and if he originally picked box
2, he will win with probability 1

2 , for a total probability of 2
3 · 1

4 + 1
3 · 1

2 = 1
3 .

If Bob predicts that he will draw two balls of different colors, then we can consider the same two possible
plays. Using similar calculations, if he draws from the same box, then he will win with probability 1

6 ,
and if he draws from a different box, then he will win with probability 2

3 . Looking at all cases, Bob’s
best play is to predict that he will draw two balls of the same color and then draw the second ball from
the same box, with a winning probability of 5

6 .

9. [6] I have 8 unit cubes of different colors, which I want to glue together into a 2 × 2 × 2 cube. How
many distinct 2× 2× 2 cubes can I make? Rotations of the same cube are not considered distinct, but
reflections are.

Answer: 1680 Our goal is to first pin down the cube, so it can’t rotate. Without loss of generality,
suppose one of the unit cubes is purple, and let the purple cube be in the top left front position. Now,
look at the three positions that share a face with the purple cube. There are

(

7
3

)

ways to pick the three
cubes that fill those positions and two ways to position them that are rotationally distinct. Now, we’ve
taken care of any possible rotations, so there are simply 4! ways to position the final four cubes. Thus,
our answer is

(

7
3

)

· 2 · 4! = 1680 ways.

10. [6] Wesyu is a farmer, and she’s building a cao (a relative of the cow) pasture. She starts with a
triangle A0A1A2 where angle A0 is 90◦, angle A1 is 60◦, and A0A1 is 1. She then extends the pasture.
First, she extends A2A0 to A3 such that A3A0 = 1

2A2A0 and the new pasture is triangle A1A2A3.
Next, she extends A3A1 to A4 such that A4A1 = 1

6A3A1. She continues, each time extending AnAn−2

to An+1 such that An+1An−2 = 1
2n−2AnAn−2. What is the smallest K such that her pasture never

exceeds an area of K?

Answer:
√

3 First, note that for any i, after performing the operation on triangle AiAi+1Ai+2,
the resulting pasture is triangle Ai+1Ai+2Ai+3. Let Ki be the area of triangle AiAi+1Ai+2. From
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An+1An−2 = 1
2n−2AnAn−2 and AnAn+1 = AnAn−2+An−2An+1, we have AnAn+1 = (1+ 1

2n−2 )AnAn−2.
We also know that the area of a triangle is half the product of its base and height, so if we let the base of
triangle An−2An−1An be AnAn−2, its area is Kn−2 = 1

2hAnAn−2. The area of triangle An−1AnAn+1

is Kn−1 = 1
2hAnAn+1. The h’s are equal because the distance from An−1 to the base does not change.

We now have Kn−1

Kn−2
= AnAn+1

AnAn−2
= 1 + 1

2n−2 = 2n−1
2n−2 . Therefore, K1

K0
= 3

2 , K2

K0
= K2

K1

K1

K0
= 7

6 · 3
2 = 7

4 ,
K3

K0
= K3

K2

K2

K0
= 15

14 · 7
4 = 15

8 . We see the pattern Kn

K0
= 2n+1−1

2n , which can be easily proven by induction.

As n approaches infinity, Kn

K0
grows arbitrarily close to 2, so the smallest K such that the pasture never

exceeds an area of K is 2K0 =
√

3.

11. [6] Compute the prime factorization of 1007021035035021007001. (You should write your answer in the
form pe1

1 pe2

2 . . . pek

k , where p1, . . . , pk are distinct prime numbers and e1, . . . , ek are positive integers.)

Answer: 77 · 117 · 137 The number in question is

7
∑

i=0

(

7

i

)

1000i = (1000 + 1)7 = 10017 = 77 · 117 · 137.

12. [6] For how many integers 1 ≤ k ≤ 2013 does the decimal representation of kk end with a 1?

Answer: 202 We claim that this is only possible if k has a units digit of 1. Clearly, it is true in
these cases. Additionally, kk cannot have a units digit of 1 when k has a units digit of 2, 4, 5, 6, or 8. If
k has a units digit of 3 or 7, then kk has a units digit of 1 if and only if 4|k, a contradiction. Similarly,
if k has a units digit of 9, then kk has a units digit of 1 if and only if 2|k, also a contradiction. Since
there are 202 integers between 1 and 2013, inclusive, with a units digit of 1, there are 202 such k which
fulfill our criterion.

13. [8] Find the smallest positive integer n such that 5n+1+2n+1

5n+2n > 4.99.

Answer: 7 Writing 5n+1 = 5 ·5n and 2n+1 = 2 ·2n and cross-multiplying yields 0.01 ·5n > 2.99 ·2n,
and re-arranging yields (2.5)n > 299. A straightforward calculation shows that the smallest n for which
this is true is n = 7.

14. [8] Consider triangle ABC with ∠A = 2∠B. The angle bisectors from A and C intersect at D, and
the angle bisector from C intersects AB at E. If DE

DC
= 1

3 , compute AB
AC

.

Answer: 7
9 Let AE = x and BE = y. Using angle-bisector theorem on △ACE we have

x : DE = AC : DC, so AC = 3x. Using some angle chasing, it is simple to see that ∠ADE = ∠AED,
so AD = AE = x. Then, note that △CDA ∼ △CEB, so y : (DC+DE) = x : DC, so y : x = 1+ 1

3 = 4
3 ,

so AB = x + 4
3x = 7

3x. Thus the desired answer is AB : AC = 7
3x : 3x = 7

9 .

15. [8] Tim and Allen are playing a match of tenus. In a match of tenus, the two players play a series
of games, each of which is won by one of the two players. The match ends when one player has won
exactly two more games than the other player, at which point the player who has won more games
wins the match. In odd-numbered games, Tim wins with probability 3/4, and in the even-numbered
games, Allen wins with probability 3/4. What is the expected number of games in a match?

Answer: 16
3 Let the answer be E. If Tim wins the first game and Allen wins the second game

or vice versa, which occurs with probability (3/4)2 + (1/4)2 = 5/8, the expected number of additional
games is just E, so the expected total number of games is E +2. If, on the other hand, one of Tim and
Allen wins both of the first two games, with probability 1 − (5/8) = 3/8, there are exactly 2 games in
the match. It follows that

E =
3

8
· 2 +

5

8
· (E + 2),

and solving gives E = 16
3 .
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16. [8] The walls of a room are in the shape of a triangle ABC with ∠ABC = 90◦, ∠BAC = 60◦, and
AB = 6. Chong stands at the midpoint of BC and rolls a ball toward AB. Suppose that the ball
bounces off AB, then AC, then returns exactly to Chong. Find the length of the path of the ball.

Answer: 3
√

21 Let C ′ be the reflection of C across AB and B′ be the reflection of B across

AC ′; note that B′, A,C are collinear by angle chasing. The image of the path under these reflections
is just the line segment MM ′, where M is the midpoint of BC and M ′ is the midpoint of B′C ′, so
our answer is just the length of MM ′. Applying the Law of Cosines to triangle M ′C ′M , we have
MM ′2 = 27 + 243 − 2 · 3

√
3 · 9

√
3 · 1

2 = 189, so MM ′ = 3
√

21.

17. [11] The lines y = x, y = 2x, and y = 3x are the three medians of a triangle with perimeter 1. Find
the length of the longest side of the triangle.

Answer:
√

58
2+

√
34+

√
58

The three medians of a triangle contain its vertices, so the three vertices of

the triangle are (a, a), (b, 2b) and (c, 3c) for some a, b, and c. Then, the midpoint of (a, a) and (b, 2b),
which is (a+b

2 , a+2b
2 ), must lie along the line y = 3x. Therefore,

a + 2b

2
= 3 · a + b

2
,

a + 2b = 3a + 3b,

−2a = b.

Similarly, the midpoint of (b, 2b) and (c, 3c), which is ( b+c
2 , 2b+3c

2 ), must lie along the line y = x.
Therefore,

2b + 3c

2
=

b + c

2
,

2b + 3c = b + c,

b = −2c,

c = −1

2
b = a.

From this, three points can be represented as (a, a), (−2a,−4a), and (a, 3a). Using the distance
formula, the three side lengths of the triangle are 2|a|,

√
34|a|, and

√
58|a|. Since the perimeter of the

triangle is 1, we find that |a| = 1
2+

√
34+

√
58

and therefore the longest side length is
√

58
2+

√
34+

√
58

.

18. [11] Define the sequence of positive integers {an} as follows. Let a1 = 1, a2 = 3, and for each n > 2,
let an be the result of expressing an−1 in base n − 1, then reading the resulting numeral in base n,
then adding 2 (in base n). For example, a2 = 310 = 112, so a3 = 113 + 23 = 610. Express a2013 in base
ten.

Answer: 23097 We claim that for nonnegative integers m and for 0 ≤ n < 3 · 2m, a3·2m+n =
(3 · 2m + n)(m + 2) + 2n. We will prove this by induction; the base case for a3 = 6 (when m = 0,
n = 0) is given in the problem statement. Now, suppose that this is true for some pair m and n. We
will divide this into two cases:

• Case 1: n < 3 · 2m − 1. Then, we want to prove that this is true for m and n + 1. In particular,
writing a3·2m+n in base 3 · 2m + n results in the digits m + 2 and 2n. Consequently, reading it in
base 3·2m+n+1 gives a3·2m+n+1 = 2+(3·2m+n+1)(m+2)+2n = (2·2m+n+1)(m+2)+2(n+1),
as desired.

• Case 2: n = 3 · 2m − 1. Then, we want to prove that this is true for m + 1 and 0. Similarly
to the previous case, we get that a3·2m+n+1 = a3·2m+1 = 2 + (3 · 2m + n + 1)(m + 2) + 2n =
2 + (3 · 2m+1)(m + 2) + 2(3 · 2m − 1) = (3 · 2m+1 + 0)((m + 1) + 2) + 2(0), as desired.

In both cases, we have proved our claim.
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19. [11] An isosceles trapezoid ABCD with bases AB and CD has AB = 13, CD = 17, and height 3. Let
E be the intersection of AC and BD. Circles Ω and ω are circumscribed about triangles ABE and
CDE. Compute the sum of the radii of Ω and ω.

Answer: 39 Let Ω have center O and radius R and let ω have center P and radius M . Let Q
be the intersection of AB and OE. Note that OE is the perpendicular bisector of AB because the
trapezoid is isosceles. Also, we see OE is the circumradius of Ω. On the other hand, we know by
similarity of △AEB and △CED that QE = 13

13+17 · 3 = 13
30 · 3. And, because BQ = 13/2 and is

perpendicular to OQ, we can apply the Pythagorean theorem to △OQB to see OQ =

√

R2 −
(

13
2

)2
.

Since OE = OQ + QE, R = 13
30 · 3 +

√

R2 −
(

13
2

)2
. Solving this equation for R yields R = 13

30 · 39.

Since by similarity M = 17
13R, we know R + M = 30

13R, so R + M = 39.

20. [11] The polynomial f(x) = x3 − 3x2 − 4x + 4 has three real roots r1, r2, and r3. Let g(x) =
x3 + ax2 + bx + c be the polynomial which has roots s1, s2, and s3, where s1 = r1 + r2z + r3z

2,

s2 = r1z + r2z
2 + r3, s3 = r1z

2 + r2 + r3z, and z = −1+i
√

3
2 . Find the real part of the sum of the

coefficients of g(x).

Answer: −26 Note that z = e
2π

3
i = cos 2π

3 + i sin 2π
3 , so that z3 = 1 and z2 + z + 1 = 0. Also,

s2 = s1z and s3 = s1z
2.

Then, the sum of the coefficients of g(x) is g(1) = (1−s1)(1−s2)(1−s3) = (1−s1)(1−s1z)(1−s1z
2) =

1 − (1 + z + z2)s1 + (z + z2 + z3)s2
1 − z3s3

1 = 1 − s3
1.

Meanwhile, s3
1 = (r1 + r2z + r3z

2)3 = r3
1 + r3

2 + r3
3 + 3r2

1r2z + 3r2
1r3z

2 + 3r2
2r3z + 3r2

2r1z
2 + 3r2

3r1z +
3r2

3r2z
2 + 6r1r2r3.

Since the real parts of both z and z2 are − 1
2 , and since all of r1, r2, and r3 are real, the real part of s3

1 is
r3
1+r3

2+r3
3− 3

2 (r2
1r2+· · ·+r2

3r2)+6r1r2r3 = (r1+r2+r3)
3− 9

2 (r1+r2+r3)(r1r2+r2r3+r3r1)+
27
2 r1r2r3 =

33 − 9
2 · 3 · −4 + 27

2 · −4 = 27.

Therefore, the answer is 1 − 27 = −26.

21. [14] Find the number of positive integers j ≤ 32013 such that

j =
m

∑

k=0

(

(−1)
k · 3ak

)

for some strictly increasing sequence of nonnegative integers {ak}. For example, we may write 3 = 31

and 55 = 30 − 33 + 34, but 4 cannot be written in this form.

Answer: 22013 Clearly m must be even, or the sum would be negative. Furthermore, if am ≤ 2013,

the sum cannot exceed 32013 since j = 3am +
∑m−1

k=0

(

(−1)
k · 3ak

)

≤ 3am . Likewise, if am > 2013, then

the sum necessarily exceeds 32013, which is not hard to see by applying the Triangle Inequality and
summing a geometric series. Hence, the elements of {ak} can be any subset of {0, 1, . . . , 2013} with an
odd number of elements. Since the number of even-sized subsets is equal to the number of odd-sized

elements, there are 22014

2 = 22013 such subsets.

Now, it suffices to show that given such an {ak}, the value of j can only be obtained in this way. Suppose
for the the sake of contradiction that there exist two such sequences {ak}0≤k≤ma

and {bk}0≤k≤mb

which produce the same value of j for j positive or negative, where we choose {ak}, {bk} such that
min(ma,mb) is as small as possible. Then, we note that since 3a0 + 3a1 + . . . + 3(ama

−1) ≤ 30 + 31 +

. . . + 3(ama−1) < 2(3(ama
−1)), we have that

∑ma

k=0

(

(−1)
k · 3ak

)

> 3(ama
−1). Similarly, we get that

3(amb
−1) ≥ ∑mb

k=0

(

(−1)
k · 3ak

)

> 3(mb−1); for the two to be equal, we must have ma = mb. However,

this means that the sequences obtained by removing ama
and amb

from {ak} {bk} have smaller maximum
value but still produce the same alternating sum, contradicting our original assumption.
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22. [14] Sherry and Val are playing a game. Sherry has a deck containing 2011 red cards and 2012 black
cards, shuffled randomly. Sherry flips these cards over one at a time, and before she flips each card
over, Val guesses whether it is red or black. If Val guesses correctly, she wins 1 dollar; otherwise, she
loses 1 dollar. In addition, Val must guess red exactly 2011 times. If Val plays optimally, what is her
expected profit from this game?

Answer: 1
4023 We will prove by induction on r + b that the expected profit for guessing if there

are r red cards, b black cards, and where g guesses must be red, is equal to (b − r) + 2(r−b)
(r+b) g. It is

not difficult to check that this holds in the cases (r, b, g) = (1, 0, 0), (0, 1, 0), (1, 0, 1), (0, 1, 1). Then,
suppose that this is true as long as the number of cards is strictly less than r + b; we will prove that
it also holds true when there are r red and b blue cards.

Let f(r, b, g) be her expected profit under these conditions. If she guesses red, her expected profit is

r

r + b
(1 + f(r − 1, b, g − 1)) +

b

r + b
(−1 + f(r, b − 1, g − 1)) = (b − r) +

2(r − b)

(r + b)
g.

Similarly, if she guesses black, her expected profit is

r

r + b
(−1 + f(r − 1, b, g)) +

b

r + b
(1 + f(r, b − 1, g)) = (b − r) +

2(r − b)

(r + b)
g.

Plugging in the our starting values gives an expected profit of 1
4023 .

23. [14] Let ABCD be a parallelogram with AB = 8, AD = 11, and ∠BAD = 60◦. Let X be on segment
CD with CX/XD = 1/3 and Y be on segment AD with AY/Y D = 1/2. Let Z be on segment AB
such that AX, BY , and DZ are concurrent. Determine the area of triangle XY Z.

Answer: 19
√

3
2 Let AX and BD meet at P . We have DP/PB = DX/AB = 3/4. Now, applying

Ceva’s Theorem in triangle ABD, we see that

AZ

ZB
=

DP

PB
· AY

Y D
=

3

4
· 1

2
=

3

8
.

Now,
[AY Z]

[ABCD]
=

[AY Z]

2[ABD]
=

1

2
· 1

3
· 3

11
=

1

22
,

and similarly
[DY X]

[ABCD]
=

1

2
· 2

3
· 3

4
=

1

4
.

Also,
[XCBZ]

[ABCD]
=

1

2

(

1

4
+

8

11

)

=
43

88
.

The area of XY Z is the rest of the fraction of the area of ABCD not covered by the three above
polygons, which by a straightforward calculation 19/88 the area of ABCD, so our answer is

8 · 11 · sin 60◦ · 19

88
=

19
√

3

2
.

24. [14] Given a point p and a line segment l, let d(p, l) be the distance between them. Let A, B, and C
be points in the plane such that AB = 6, BC = 8, AC = 10. What is the area of the region in the
(x, y)-plane formed by the ordered pairs (x, y) such that there exists a point P inside triangle ABC
with d(P,AB) + x = d(P,BC) + y = d(P,AC)?

Answer: 288
5 . Place ABC in the coordinate plane so that A = (0, 6), B = (0, 0), C = (8, 0).

Consider a point P = (a, b) inside triangle ABC. Clearly, d(P,AB) = a, d(P,BC) = b. Now, we see
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that the area of triangle ABC is 6·8
2 = 24, but may also be computed by summing the areas of triangles

PAB,PBC,PCA. The area of triangle PAB is 6·a
2 = 3a, and similarly the area of triangle PBC is

4b. Thus, it follows easily that d(P,CA) = 24−3a−4b
5 . Now, we have

(x, y) =

(

24

5
− 8

5
a − 4

b
b,

24

5
− 3

5
a − 9

5
b

)

.

The desired region is the set of (x, y) obtained by those (a, b) subject to the constraints a ≥ 0, b ≥
0, 6a + 8b ≤ 48.

Consequently, our region is the triangle whose vertices are obtained by evaluating (x, y) at the vertices
(a, b) of the triangle. To see this, let f(a, b) output the corresponding (x, y) according to the above.
Then, we can write every point P in ABC as P = m(0, 0) + n(0, 6) + p(8, 0) for some m + n + p = 1.
Then, f(P ) = mf(0, 0) + nf(0, 6) + pf(8, 0) = m( 24

5 , 24
5 ) + n(−8, 0) + p(0,−6), so f(P ) ranges over

the triangle with those three vertices.

Therefore, we need the area of the triangle with vertices
(

24
5 , 24

5

)

, (0,−6), (−8, 0), which is easily
computed (for example, using determinants) to be 288

5 .

25. [17] The sequence (zn) of complex numbers satisfies the following properties:

• z1 and z2 are not real.

• zn+2 = z2
n+1zn for all integers n ≥ 1.

• zn+3

z2
n

is real for all integers n ≥ 1.

•
∣

∣

∣

∣

z3

z4

∣

∣

∣

∣

=

∣

∣

∣

∣

z4

z5

∣

∣

∣

∣

= 2.

Find the product of all possible values of z1.

Answer: 65536 All complex numbers can be expressed as r(cos θ + i sin θ) = reiθ. Let zn be
rneiθn .

zn+3

z2
n

=
z2
n+2zn+1

z2
n

=
z5
n+1z

2
n

z2
n

= z5
n+1 is real for all n ≥ 1, so θn =

πkn

5
for all n ≥ 2, where kn is an

integer. θ1 + 2θ2 = θ3, so we may write θ1 =
πk1

5
with k1 an integer.

r3

r4
=

r4

r5
⇒ r5 =

r2
4

r3
= r2

4r3, so r3 = 1.
r3

r4
= 2 ⇒ r4 =

1

2
, r4 = r2

3r2 ⇒ r2 =
1

2
, and r3 = r2

2r1 ⇒ r1 = 4.

Therefore, the possible values of z1 are the nonreal roots of the equation x10−410 = 0, and the product

of the eight possible values is
410

42
= 48 = 65536. For these values of z1, it is not difficult to construct

a sequence which works, by choosing z2 nonreal so that |z2| = 1
2 .

26. [17] Triangle ABC has perimeter 1. Its three altitudes form the side lengths of a triangle. Find the
set of all possible values of min(AB,BC,CA).

Answer: ( 3−
√

5
4 , 1

3 ] Let a, b, c denote the side lengths BC,CA, and AB, respectively. Without

loss of generality, assume a ≤ b ≤ c; we are looking for the possible range of a.

First, note that the maximum possible value of a is 1
3 , which occurs when ABC is equilateral. It

remains to find a lower bound for a.

Now rewrite c = xa and b = ya, where we have x ≥ y ≥ 1. Note that for a non-equilateral triangle,
x > 1. The triangle inequality gives us a + b > c, or equivalently, y > x − 1. If we let K be the
area, the condition for the altitudes gives us 2K

c
+ 2K

b
> 2K

a
, or equivalently, 1

b
> 1

a
− 1

c
, which after

some manipulation yields y < x
x−1 . Putting these conditions together yields x − 1 < x

x−1 , and after

rearranging and solving a quadratic, we get x < 3+
√

5
2 .
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We now use the condition a(1 + x + y) = 1, and to find a lower bound for a, we need an upper bound
for 1 + x + y. We know that 1 + x + y < 1 + x + x

x−1 = x − 1 + 1
x−1 + 3.

Now let f(x) = x − 1 + 1
x−1 + 3. If 1 < x < 2, then 1 + x + y ≤ 1 + 2x < 5. But for x ≥ 2, we see

that f(x) attains a minimum of 5 at x = 2 and continues to strictly increase after that point. Since

x < 3+
√

5
2 , we have f(x) < f

(

3+
√

5
2

)

= 3 +
√

5 > 5, so this is a better upper bound than the case for

which 1 < x < 2. Therefore, a >
(

1
3+

√
5

)

= 3−
√

5
4 .

For any a such that
√

5 − 2 ≥ a > 3−
√

5
4 , we can let b = 1+

√
5

2 a and c = 1 − a − b. For any other
possible a, we can let b = c = 1−a

2 . The triangle inequality and the altitude condition can both be
verified algebraically.

We now conclude that the set of all possible a is 3−
√

5
4 < a ≤ 1

3 .

27. [17] Let W be the hypercube {(x1, x2, x3, x4) | 0 ≤ x1, x2, x3, x4 ≤ 1}. The intersection of W and a
hyperplane parallel to x1 + x2 + x3 + x4 = 0 is a non-degenerate 3-dimensional polyhedron. What is
the maximum number of faces of this polyhedron?

Answer: 8 The number of faces in the polyhedron is equal to the number of distinct cells (3-
dimensional faces) of the hypercube whose interior the hyperplane intersects. However, it is possible
to arrange the hyperplane such that it intersects all 8 cells. Namely, x1 + x2 + x3 + x4 = 3

2 intersects
all 8 cells because it passes through (0, 1

2 , 1
2 , 1

2 ) (which is on the cell x1 = 0), (1, 1
6 , 1

6 , 1
6 ) (which is on

the cell x1 = 1), and the points of intersection with the other 6 cells can be found by permuting these
quadruples.

28. [17] Let z0 +z1 +z2 + · · · be an infinite complex geometric series such that z0 = 1 and z2013 = 1
20132013 .

Find the sum of all possible sums of this series.

Answer: 20132014

20132013−1 Clearly, the possible common ratios are the 2013 roots r1, r2, . . . , r2013 of the

equation r2013 = 1
20132013 . We want the sum of the values of xn = 1

1−rn
, so we consider the polynomial

whose roots are x1, x2, . . . , x2013. It is easy to see that (1− 1
xn

)2013 = 1
20132013 , so it follows that the xn

are the roots of the polynomial equation 1
20132013 x2013 − (x− 1)2013 = 0. The leading coefficient of this

polynomial is 1
20132013 − 1, and it follows easily from the Binomial Theorem that the next coefficient is

2013, so our answer is, by Vieta’s Formulae,

− 2013
1

20132013 − 1
=

20132014

20132013 − 1
.

29. [20] Let A1, A2, ..., Am be finite sets of size 2012 and let B1, B2, ..., Bm be finite sets of size 2013 such
that Ai ∩ Bj = ∅ if and only if i = j. Find the maximum value of m.

Answer:
(

4025
2012

)

In general, we will show that if each of the sets Ai contain a elements and if each

of the sets Bj contain b elements, then the maximum value for m is
(

a+b
a

)

.

Let U denote the union of all the sets Ai and Bj and let |U | = n. Consider the n! orderings of the
elements of U . Note that for any specific ordering, there is at most one value of i such that all the
elements in Ai come before all the elements in Bi in this ordering; this follows since Aj shares at least
one element with Bi and Bj shares at least one element with Ai for any other j 6= i.

On the other hand, the number of ways to permute the (a + b) elements in Ai ∪ Bi so that all the
elements in Ai come first is equal to a!b!. Therefore, the number of permutations of U where all the
elements in Ai come before all the elements in Bi is equal to:

n! · a!b!

(a + b)!
=

n!
(

a+b
a

)

Summing over all m values of i, the total number of orderings where, for some i, the elements in Ai

come before Bi is equal to
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n!m
(

a+b
a

)

But there are at most u! such orderings, since there are u! total orderings, so it follows that m ≤
(

a+b
a

)

.
Equality is attained by taking U to be a set containing (a + b) elements, letting Ai range over all
a-element subsets of U , and letting Bi = U \ Ai for each i.

30. [20] How many positive integers k are there such that

k

2013
(a + b) = lcm(a, b)

has a solution in positive integers (a, b)?

Answer: 1006 First, we can let h = gcd(a, b) so that (a, b) = (hA, hB) where gcd(A,B) = 1.

Making these subtitutions yields k
2013 (hA+hB) = hAB, so k = 2013AB

A+B
. Because A and B are relatively

prime, A + B shares no common factors with neither A nor B, so in order to have k be an integer,
A + B must divide 2013, and since A and B are positive, A + B > 1.

We first show that for different possible values of A + B, the values of k generated are distinct. In
particular, we need to show that 2013AB

A+B
6= 2013A′B′

A′+B′ whenever A + B 6= A′ + B′. Assume that such an
equality exists, and cross-multiplying yields AB(A′ +B′) = A′B′(A+B). Since AB is relatively prime
to A + B, we must have A + B divide A′ + B′. With a similar argument, we can show that A′ + B′

must divide A + B, so A + B = A′ + B′.

Now, we need to show that for the same denominator A + B, the values of k generated are also
distinct for some relatively prime non-ordered pair (A,B). Let n = A + B = C + D. Assume
that 2013AB

n
= 2013CD

n
, or equivalently, A(n − A) = C(n − C). After some rearrangement, we have

(C + A)(C − A) = n(C − A) This implies that either C = A or C = n − A = B. But in either case,
(C,D) is some permutation of (A,B).

Our answer can therefore be obtained by summing up the totients of the factors of 2013 (excluding 1)
and dividing by 2 since (A,B) and (B,A) correspond to the same k value, so our answer is 2013−1

2 =
1006.

Remark: It can be proven that the sum of the totients of all the factors of any positive integer N
equals N , but in this case, the sum of the totients can be computed by hand.

31. [20] Let ABCD be a quadrilateral inscribed in a unit circle with center O. Suppose that ∠AOB =
∠COD = 135◦, BC = 1. Let B′ and C ′ be the reflections of A across BO and CO respectively. Let
H1 and H2 be the orthocenters of AB′C ′ and BCD, respectively. If M is the midpoint of OH1, and
O′ is the reflection of O about the midpoint of MH2, compute OO′.

Answer: 1
4 (8 −

√
6 − 3

√
2) Put the diagram on the complex plane with O at the origin and A at

1. Let B have coordinate b and C have coordinate c. We obtain easily that B′ is b2, C ′ is c2, and D
is bc. Therefore, H1 is 1 + b2 + c2 and H2 is b + c + bc (we have used the fact that for triangles on the
unit circle, their orthocenter is the sum of the vertices). Finally, we have that M is 1

2 (1 + b2 + c2), so
the reflection of O about the midpoint of MH2 is 1

2 (1 + b2 + c2 + 2b + 2c + 2bc) = 1
2 (b + c + 1)2, so we

just seek 1
2 |b + c + 1|2. But we know that b = cis135◦ and c = cis195◦, so we obtain that this value is

1
4 (8 −

√
6 − 3

√
2).

32. [20] For an even integer positive integer n Kevin has a tape of length 4n with marks at −2n,−2n +
1, . . . , 2n − 1, 2n. He then randomly picks n points in the set −n,−n + 1,−n + 2, . . . , n − 1, n, and
places a stone on each of these points. We call a stone ‘stuck’ if it is on 2n or −2n, or either all the
points to the right, or all the points to the left, all contain stones. Then, every minute, Kevin shifts
the unstuck stones in the following manner:

• He picks an unstuck stone uniformly at random and then flips a fair coin.
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• If the coin came up heads, he then moves that stone and every stone in the largest contiguous set
containing that stone one point to the left. If the coin came up tails, he moves every stone in that set
one point right instead.

• He repeats until all the stones are stuck.

Let pk be the probability that at the end of the process there are exactly k stones in the right half.
Evaluate

pn−1 − pn−2 + pn−3 − . . . + p3 − p2 + p1

pn−1 + pn−2 + pn−3 + . . . + p3 + p2 + p1

in terms of n.

Answer: 1
n−1 After we have selected the positions of the initial n stones, we number their

positions: a1 < a2 < . . . < an. The conditions on how we move the stones imply that the expected
value of (ai − aj) after t minutes is still equal to ai − aj . In addition, if bi is the final position of the
ith stone, E(bi+1 − bi) = E(ai+1 − ai). But this quantity is also equal to (3n + 2) · pi + 1 · (1 − pi).

Now, let’s calculate the expected value of ai+1 − ai. This is the sum over g = ai+1 − ai, and j, the
number of spaces before ai of g ·

(

j
i−1

)(

2n−j−g
n−i+1

)

, so we get

1
(

2n+1
n

)

∑

g

g ·
∑

j

(

j

i − 1

)(

2n − j − g

n − i − 1

)

But
∑

j

(

j
i−1

)(

2n−j−g
n−i−1

)

is just
(

2n−g+1
n−1

)

. Therefore the expected value of ai+1 − ai is independent of i,

so pi is constant for all i 6= 0, n. It follows that the answer is 1
n−1 .

33. [25] Compute the value of 125 +224 +323 + . . .+242 +251. If your answer is A and the correct answer

is C, then your score on this problem will be
⌊

25min
(

(

A
C

)2
,
(

C
A

)2
)⌋

.

Answer: 66071772829247409 The sum is extremely unimodal, so we want to approximate it using
its largest term. Taking logs of each term, we see that the max occurs when (26 − n) log n peaks, and
taking derivatives gives

x + x log x = 26

From here it’s easy to see that the answer is around 10, and slightly less (it’s actually about 8.3, but
in any case it’s hard to find powers of anything except 10). Thus the largest term will be something
like 1016, which is already an order of magnitude within the desired answer 6.6 × 1016.

To do better we’d really need to understand the behavior of the function x26−x, but what approximately
happens is that only the four or five largest terms in the sum are of any substantial size; thus it is
reasonable here to pick some constant from 4 to 20 to multiply our guess 1016; any guess between
4.0 × 1016 and 2.0 × 1017 is reasonable.

34. [25] For how many unordered sets {a, b, c, d} of positive integers, none of which exceed 168, do there
exist integers w, x, y, z such that (−1)wa + (−1)xb + (−1)yc + (−1)zd = 168? If your answer is A and

the correct answer is C, then your score on this problem will be ⌊25e−3
|C−A|

C ⌋.
Answer: 761474 As an approximation, we assume a, b, c, d are ordered to begin with (so we

have to divide by 24 later) and add to 168 with a unique choice of signs; then, it suffices to count
e + f + g + h = 168 with each e, f, g, h in [−168, 168] and then divide by 24 (we drop the condition
that none of them can be zero because it shouldn’t affect the answer that much).

One way to do this is generating functions. We want the coefficient of t168 in the generating function

(t−168 + t−167 + . . . + t167 + t168)4 = (t169 − t−168)4/(t − 1)4

Clearing the negative powers, it suffices to find the coefficient of t840 in

(t337 − 1)4/(t − 1)4 = (1 − 4t337 + 6t674 − . . .) 1
(t−1)4 .

To do this we expand the bottom as a power series in t:

Guts Round



1
(t−1)4 =

∑

n≥0

(

n+3
3

)

tn

It remains to calculate
(

840+3
3

)

− 4 ·
(

840−337+3
3

)

+ 6 ·
(

840−674+3
3

)

. This is almost exactly equal to
1
6 (8433 − 4 · 5063 + 6 · 1693) ≈ 1.83 × 107.

Dividing by 24, we arrive at an estimation 762500. Even if we use a bad approximation 1
6·24 (8503 − 4 ·

5003 + 6 · 1503) we get approximately 933000, which is fairly close to the answer.

35. [25] Let P be the number to partition 2013 into an ordered tuple of prime numbers? What is
log2(P )? If your answer is A and the correct answer is C, then your score on this problem will be
⌊

125
2

(

min
(

C
A

, A
C

)

− 3
5

)⌋

or zero, whichever is larger.

Answer: 614.519... We use the following facts and heuristics.

(1) The ordered partitions of n into any positive integers (not just primes) is 2n−1. This can be guessed
by checking small cases and finding a pattern, and is not difficult to prove.

(2) The partitions of 2013
n

into any positive integers equals the partitions of 2013 into integers from the
set {n, 2n, 3n, · · · }.
(3) The small numbers matter more when considering partitions.

(4) The set of primes {2, 3, 5, 7, · · · } is close in size (near the small numbers) to {3, 6, 9, · · · } or
{2, 4, 6, · · · }.
(5) The prime numbers get very sparse compared to the above two sets in the larger numbers.

Thus, using these heuristics, the number of partitions of 2013 into primes is approximately 2
2013

3
−1

or 2
2013

2
−1, which, taking logarithms, give 670 and 1005.5, respectively. By (5), we should estimate

something that is slightly less than these numbers.

36. [24] (Mathematicians A to Z) Below are the names of 26 mathematicians, one for each letter of
the alphabet. Your answer to this question should be a subset of {A,B, · · · , Z}, where each letter
represents the corresponding mathematician. If two mathematicians in your subset have birthdates
that are within 20 years of each other, then your score is 0. Otherwise, your score is max(3(k − 3), 0)
where k is the number of elements in your subset.

Niels Abel Isaac Netwon

Étienne Bézout Nicole Oresme
Augustin-Louis Cauchy Blaise Pascal
René Descartes Daniel Quillen
Leonhard Euler Bernhard Riemann
Pierre Fatou Jean-Pierre Serre
Alexander Grothendieck Alan Turing
David Hilbert Stanislaw Ulam
Kenkichi Iwasawa John Venn
Carl Jacobi Andrew Wiles
Andrey Kolmogorov Leonardo Ximenes
Joseph-Louis Lagrange Shing-Tung Yau
John Milnor Ernst Zermelo

Answer: {O, D, P, E, B, C, R, H, K, S, Y} A knowledgeable math historian might come up with

this 11-element subset, earning 24 points: {O, D, P, E, B, C, R, H, K, S, Y}.
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