HMMT November 2013
 Saturday 9 November 2013
 General Test

1. [2] What is the smallest non-square positive integer that is the product of four prime numbers (not necessarily distinct)?
2. [3] Plot points A, B, C at coordinates $(0,0),(0,1)$, and $(1,1)$ in the plane, respectively. Let S denote the union of the two line segments $A B$ and $B C$. Let X_{1} be the area swept out when Bobby rotates S counterclockwise 45 degrees about point A. Let X_{2} be the area swept out when Calvin rotates S clockwise 45 degrees about point A. Find $\frac{X_{1}+X_{2}}{2}$.
3. [4] A 24-hour digital clock shows times $h: m: s$, where h, m, and s are integers with $0 \leq h \leq 23$, $0 \leq m \leq 59$, and $0 \leq s \leq 59$. How many times $h: m: s$ satisfy $h+m=s$?
4. [4] A 50-card deck consists of 4 cards labeled " i " for $i=1,2, \ldots, 12$ and 2 cards labeled " 13 ". If Bob randomly chooses 2 cards from the deck without replacement, what is the probability that his 2 cards have the same label?
5. [5] Let $A B C$ be an isosceles triangle with $A B=A C$. Let D and E be the midpoints of segments $A B$ and $A C$, respectively. Suppose that there exists a point F on ray $\overrightarrow{D E}$ outside of $A B C$ such that triangle $B F A$ is similar to triangle $A B C$. Compute $\frac{A B}{B C}$.
6. [5] Find the number of positive integer divisors of 12 ! that leave a remainder of 1 when divided by 3 .
7. [6] Find the largest real number λ such that $a^{2}+b^{2}+c^{2}+d^{2} \geq a b+\lambda b c+c d$ for all real numbers a, b, c, d.
8. [6] How many of the first 1000 positive integers can be written as the sum of finitely many distinct numbers from the sequence $3^{0}, 3^{1}, 3^{2}, \ldots$?
9. [7] Let $A B C$ be a triangle and D a point on $B C$ such that $A B=\sqrt{2}, A C=\sqrt{3}, \angle B A D=30^{\circ}$, and $\angle C A D=45^{\circ}$. Find $A D$.
10. [8] How many functions $f:\{1,2, \ldots, 2013\} \rightarrow\{1,2, \ldots, 2013\}$ satisfy $f(j)<f(i)+j-i$ for all integers i, j such that $1 \leq i<j \leq 2013$?
