HMMT November 2013
 Saturday 9 November 2013

 General Test

 General Test}

1. [2] What is the smallest non-square positive integer that is the product of four prime numbers (not necessarily distinct)?

Answer: $\quad 24$ The smallest two integers that are the product of four primes are $2^{4}=16$ and $2^{3} \cdot 3=24$. Since 16 is a perfect square and 24 is not, the answer is 24 .
2. [3] Plot points A, B, C at coordinates $(0,0),(0,1)$, and $(1,1)$ in the plane, respectively. Let S denote the union of the two line segments $A B$ and $B C$. Let X_{1} be the area swept out when Bobby rotates S counterclockwise 45 degrees about point A. Let X_{2} be the area swept out when Calvin rotates S clockwise 45 degrees about point A. Find $\frac{X_{1}+X_{2}}{2}$.
Answer: $\sqrt{\frac{\pi}{4}}$ It's easy to see $X_{1}=X_{2}$. Simple cutting and pasting shows that X_{1} equals the area of $\frac{1}{8}$ of a circle with radius $A C=\sqrt{2}$, so $\frac{X_{1}+X_{2}}{2}=X_{1}=\frac{1}{8} \pi(\sqrt{2})^{2}=\frac{\pi}{4}$.
3. [4] A 24-hour digital clock shows times $h: m: s$, where h, m, and s are integers with $0 \leq h \leq 23$, $0 \leq m \leq 59$, and $0 \leq s \leq 59$. How many times $h: m: s$ satisfy $h+m=s$?
Answer: 1164 We are solving $h+m=s$ in $0 \leq s \leq 59,0 \leq m \leq 59$, and $0 \leq h \leq 23$. If $s \geq 24$, each h corresponds to exactly 1 solution, so we get $24(59-23)=24(36)$ in this case. If $s \leq 23$, we want the number of nonnegative integer solutions to $h+m \leq 23$, which by lattice point counting (or balls and urns) is $\binom{23+2}{2}=(23+2)(23+1) / 2=25 \cdot 12$. Thus our total is $12(72+25)=12(100-3)=1164$.
4. [4] A 50 -card deck consists of 4 cards labeled " i " for $i=1,2, \ldots, 12$ and 2 cards labeled " 13 ". If Bob randomly chooses 2 cards from the deck without replacement, what is the probability that his 2 cards have the same label?
Answer: $\frac{73}{1225}$ All pairs of distinct cards (where we distinguish cards even with the same label) are equally likely. There are $\binom{2}{2}+12\binom{4}{2}=73$ pairs of cards with the same label and $\binom{50}{2}=100 \cdot \frac{49}{4}=1225$ pairs of cards overall, so the desired probability is $\frac{73}{1225}$.
5. [5] Let $A B C$ be an isosceles triangle with $A B=A C$. Let D and E be the midpoints of segments $A B$ and $A C$, respectively. Suppose that there exists a point F on ray $\overrightarrow{D E}$ outside of $A B C$ such that triangle $B F A$ is similar to triangle $A B C$. Compute $\frac{A B}{B C}$.
Answer: $\sqrt{2}$ Let $\alpha=\angle A B C=\angle A C B, A B=2 x$, and $B C=2 y$, so $A D=D B=A E=E C=x$ and $D E=y$. Since $\triangle B F A \sim \triangle A B C$ and $B A=A C$, we in fact have $\triangle B F A \cong \triangle A B C$, so $B F=B A=2 x, F A=2 y$, and $\angle D A F=\alpha$. But $D E \| B C$ yields $\angle A D F=\angle A B C=\alpha$ as well, whence $\triangle F A D \sim \triangle A B C$ gives $\frac{2 y}{x}=\frac{F A}{A D}=\frac{A B}{B C}=\frac{2 x}{2 y} \Longrightarrow \frac{A B}{B C}=\frac{x}{y}=\sqrt{2}$.
6. [5] Find the number of positive integer divisors of 12 ! that leave a remainder of 1 when divided by 3 .

Answer: 66 First we factor $12!=2^{10} 3^{5} 5^{2} 7^{1} 11^{1}$, and note that $2,5,11 \equiv-1(\bmod 3)$ while $7 \equiv 1$ $(\bmod 3)$. The desired divisors are precisely $2^{a} 5^{b} 7^{c} 11^{d}$ with $0 \leq a \leq 10,0 \leq b \leq 2,0 \leq c \leq 1,0 \leq d \leq 1$, and $a+b+d$ even. But then for any choice of a, b, exactly one $d \in\{0,1\}$ makes $a+b+d$ even, so we have exactly one $1(\bmod 3)$-divisor for every triple (a, b, c) satisfying the inequality constraints. This gives a total of $(10+1)(2+1)(1+1)=66$.
7. [6] Find the largest real number λ such that $a^{2}+b^{2}+c^{2}+d^{2} \geq a b+\lambda b c+c d$ for all real numbers a, b, c, d.
Answer: $\left.\begin{array}{|c}\frac{3}{2} \\ \text { Let } \\ \\ \hline\end{array} a, b, c, d\right)=\left(a^{2}+b^{2}+c^{2}+d^{2}\right)-(a b+\lambda b c+c d)$. For fixed $(b, c, d), f$ is minimized at $a=\frac{b}{2}$, and for fixed $(a, b, c), f$ is minimized at $d=\frac{c}{2}$, so simply we want the largest λ such that $f\left(\frac{b}{2}, b, c, \frac{c}{2}\right)=\frac{3}{4}\left(b^{2}+c^{2}\right)-\lambda b c$ is always nonnegative. By AM-GM, this holds if and only if $\lambda \leq 2 \frac{3}{4}=\frac{3}{2}$.
8. [6] How many of the first 1000 positive integers can be written as the sum of finitely many distinct numbers from the sequence $3^{0}, 3^{1}, 3^{2}, \ldots$?
Answer: 105 We want to find which integers have only 0's and 1's in their base 3 representation. Note that $1000_{10}=1101001_{3}$. We can construct a bijection from all such numbers to the binary strings, by mapping $x_{3} \leftrightarrow x_{2}$. Since $1101001_{2}=105_{10}$, we conclude that the answer is 105 .
9. [7] Let $A B C$ be a triangle and D a point on $B C$ such that $A B=\sqrt{2}, A C=\sqrt{3}, \angle B A D=30^{\circ}$, and $\angle C A D=45^{\circ}$. Find $A D$.
Answer: $\quad \frac{\sqrt{6}}{2}$ OR $\frac{\sqrt{3}}{\sqrt{2}}$ Note that $[B A D]+[C A D]=[A B C]$. If $\alpha_{1}=\angle B A D, \alpha_{2}=\angle C A D$, then we deduce $\frac{\sin \left(\alpha_{1}+\alpha_{2}\right)}{A D}=\frac{\sin \alpha_{1}}{A C}+\frac{\sin \alpha_{2}}{A B}$ upon division by $A B \cdot A C \cdot A D$. Now

$$
A D=\frac{\sin \left(30^{\circ}+45^{\circ}\right)}{\frac{\sin 30^{\circ}}{\sqrt{3}}+\frac{\sin 45^{\circ}}{\sqrt{2}}}
$$

But $\sin \left(30^{\circ}+45^{\circ}\right)=\sin 30^{\circ} \cos 45^{\circ}+\sin 45^{\circ} \cos 30^{\circ}=\sin 30^{\circ} \frac{1}{\sqrt{2}}+\sin 45^{\circ} \frac{\sqrt{3}}{2}=\frac{\sqrt{6}}{2}\left(\frac{\sin 30^{\circ}}{\sqrt{3}}+\frac{\sin 45^{\circ}}{\sqrt{2}}\right)$, so our answer is $\frac{\sqrt{6}}{2}$.
10. [8] How many functions $f:\{1,2, \ldots, 2013\} \rightarrow\{1,2, \ldots, 2013\}$ satisfy $f(j)<f(i)+j-i$ for all integers i, j such that $1 \leq i<j \leq 2013 ?$
Answer: $\left.\quad \begin{array}{l}4025 \\ 2013\end{array}\right)$ Note that the given condition is equivalent to $f(j)-j<f(i)-i$ for all $1 \leq i<j \leq 2013$. Let $g(i)=f(i)-i$, so that the condition becomes $g(j)<g(i)$ for $i<j$ and $1-i \leq g(i) \leq 2013-i$. However, since g is decreasing, we see by induction that $g(i+1)$ is in the desired range so long as $g(i)$ is in the desired range. Hence, it suffices to choose 2013 values for $g(1), \ldots, g(2013)$ in decreasing order from $[-2012,2012]$, for a total of $\binom{4025}{2013}$ possible functions.

