HMMT November 2013 Saturday 9 November 2013

General Test

1. [2] What is the smallest non-square positive integer that is the product of four prime numbers (not necessarily distinct)?

Answer: $\lfloor 24 \rfloor$ The smallest two integers that are the product of four primes are $2^4 = 16$ and $2^3 \cdot 3 = 24$. Since 16 is a perfect square and 24 is not, the answer is 24.

[3] Plot points A, B, C at coordinates (0,0), (0,1), and (1,1) in the plane, respectively. Let S denote the union of the two line segments AB and BC. Let X₁ be the area swept out when Bobby rotates S counterclockwise 45 degrees about point A. Let X₂ be the area swept out when Calvin rotates S clockwise 45 degrees about point A. Find X_{1+X₂}/2.

Answer: $\begin{bmatrix} \frac{\pi}{4} \\ 1 \end{bmatrix}$ It's easy to see $X_1 = X_2$. Simple cutting and pasting shows that X_1 equals the area of $\frac{1}{8}$ of a circle with radius $AC = \sqrt{2}$, so $\frac{X_1 + X_2}{2} = X_1 = \frac{1}{8}\pi(\sqrt{2})^2 = \frac{\pi}{4}$.

3. [4] A 24-hour digital clock shows times h: m: s, where h, m, and s are integers with $0 \le h \le 23$, $0 \le m \le 59$, and $0 \le s \le 59$. How many times h: m: s satisfy h + m = s?

Answer: 1164 We are solving h + m = s in $0 \le s \le 59$, $0 \le m \le 59$, and $0 \le h \le 23$. If $s \ge 24$, each h corresponds to exactly 1 solution, so we get 24(59-23) = 24(36) in this case. If $s \le 23$, we want the number of nonnegative integer solutions to $h + m \le 23$, which by lattice point counting (or balls and urns) is $\binom{23+2}{2} = (23+2)(23+1)/2 = 25 \cdot 12$. Thus our total is 12(72+25) = 12(100-3) = 1164.

4. [4] A 50-card deck consists of 4 cards labeled "i" for i = 1, 2, ..., 12 and 2 cards labeled "13". If Bob randomly chooses 2 cards from the deck without replacement, what is the probability that his 2 cards have the same label?

Answer: $\begin{bmatrix} \frac{73}{1225} \end{bmatrix}$ All pairs of distinct cards (where we distinguish cards even with the same label) are equally likely. There are $\binom{2}{2} + 12\binom{4}{2} = 73$ pairs of cards with the same label and $\binom{50}{2} = 100 \cdot \frac{49}{4} = 1225$ pairs of cards overall, so the desired probability is $\frac{73}{1225}$.

5. [5] Let ABC be an isosceles triangle with AB = AC. Let D and E be the midpoints of segments AB and AC, respectively. Suppose that there exists a point F on ray \overrightarrow{DE} outside of ABC such that triangle BFA is similar to triangle ABC. Compute $\frac{AB}{BC}$.

Answer: $\sqrt{2}$ Let $\alpha = \angle ABC = \angle ACB$, AB = 2x, and BC = 2y, so AD = DB = AE = EC = xand DE = y. Since $\triangle BFA \sim \triangle ABC$ and BA = AC, we in fact have $\triangle BFA \cong \triangle ABC$, so BF = BA = 2x, FA = 2y, and $\angle DAF = \alpha$. But $DE \parallel BC$ yields $\angle ADF = \angle ABC = \alpha$ as well, whence $\triangle FAD \sim \triangle ABC$ gives $\frac{2y}{x} = \frac{FA}{AD} = \frac{AB}{BC} = \frac{2x}{2y} \implies \frac{AB}{BC} = \frac{x}{y} = \sqrt{2}$.

6. [5] Find the number of positive integer divisors of 12! that leave a remainder of 1 when divided by 3.

Answer: [66] First we factor $12! = 2^{10}3^55^27^111^1$, and note that $2, 5, 11 \equiv -1 \pmod{3}$ while $7 \equiv 1 \pmod{3}$. The desired divisors are precisely $2^a5^b7^c11^d$ with $0 \le a \le 10, 0 \le b \le 2, 0 \le c \le 1, 0 \le d \le 1$, and a + b + d even. But then for any choice of a, b, exactly one $d \in \{0, 1\}$ makes a + b + d even, so we have exactly one $1 \pmod{3}$ -divisor for every triple (a, b, c) satisfying the inequality constraints. This gives a total of (10 + 1)(2 + 1)(1 + 1) = 66.

7. [6] Find the largest real number λ such that $a^2 + b^2 + c^2 + d^2 \ge ab + \lambda bc + cd$ for all real numbers a, b, c, d.

Answer: $\begin{bmatrix} \frac{3}{2} \end{bmatrix}$ Let $f(a, b, c, d) = (a^2 + b^2 + c^2 + d^2) - (ab + \lambda bc + cd)$. For fixed (b, c, d), f is minimized at $a = \frac{b}{2}$, and for fixed (a, b, c), f is minimized at $d = \frac{c}{2}$, so simply we want the largest λ such that $f(\frac{b}{2}, b, c, \frac{c}{2}) = \frac{3}{4}(b^2 + c^2) - \lambda bc$ is always nonnegative. By AM-GM, this holds if and only if $\lambda \leq 2\frac{3}{4} = \frac{3}{2}$.

8. [6] How many of the first 1000 positive integers can be written as the sum of finitely many distinct numbers from the sequence $3^0, 3^1, 3^2, \ldots$?

Answer: 105 We want to find which integers have only 0's and 1's in their base 3 representation. Note that $1000_{10} = 1101001_3$. We can construct a bijection from all such numbers to the binary strings, by mapping $x_3 \leftrightarrow x_2$. Since $1101001_2 = 105_{10}$, we conclude that the answer is 105.

9. [7] Let ABC be a triangle and D a point on BC such that $AB = \sqrt{2}$, $AC = \sqrt{3}$, $\angle BAD = 30^{\circ}$, and $\angle CAD = 45^{\circ}$. Find AD.

Answer: $\boxed{\frac{\sqrt{6}}{2} \text{ OR } \frac{\sqrt{3}}{\sqrt{2}}}$ Note that [BAD] + [CAD] = [ABC]. If $\alpha_1 = \angle BAD$, $\alpha_2 = \angle CAD$, then we deduce $\frac{\sin(\alpha_1 + \alpha_2)}{AD} = \frac{\sin \alpha_1}{AC} + \frac{\sin \alpha_2}{AB}$ upon division by $AB \cdot AC \cdot AD$. Now

$$AD = \frac{\sin(30^\circ + 45^\circ)}{\frac{\sin 30^\circ}{\sqrt{3}} + \frac{\sin 45^\circ}{\sqrt{2}}}$$

But $\sin(30^\circ + 45^\circ) = \sin 30^\circ \cos 45^\circ + \sin 45^\circ \cos 30^\circ = \sin 30^\circ \frac{1}{\sqrt{2}} + \sin 45^\circ \frac{\sqrt{3}}{2} = \frac{\sqrt{6}}{2} \left(\frac{\sin 30^\circ}{\sqrt{3}} + \frac{\sin 45^\circ}{\sqrt{2}}\right)$, so our answer is $\frac{\sqrt{6}}{2}$.

10. [8] How many functions $f : \{1, 2, \dots, 2013\} \rightarrow \{1, 2, \dots, 2013\}$ satisfy f(j) < f(i) + j - i for all integers i, j such that $1 \le i < j \le 2013$?

Answer: $\boxed{\binom{4025}{2013}}$ Note that the given condition is equivalent to f(j) - j < f(i) - i for all $1 \le i < j \le 2013$. Let g(i) = f(i) - i, so that the condition becomes g(j) < g(i) for i < j and $1 - i \le g(i) \le 2013 - i$. However, since g is decreasing, we see by induction that g(i + 1) is in the desired range so long as g(i) is in the desired range. Hence, it suffices to choose 2013 values for $g(1), \ldots, g(2013)$ in decreasing order from [-2012, 2012], for a total of $\binom{4025}{2013}$ possible functions.