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1. [5] Evaluate 2+45+8+4---+ 101.
2. [6] Two fair six-sided dice are rolled. What is the probability that their sum is at least 107

3. [5] A square is inscribed in a circle of radius 1. Find the perimeter of the square.
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4. [6] Find the minimum possible value of (2 4+ 6z + 2)? over all real numbers .

5. [6] How many positive integers less than 100 are relatively prime to 2007 (Two numbers are relatively
prime if their greatest common factor is 1.)

6. [6] A right triangle has area 5 and a hypotenuse of length 5. Find its perimeter.
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7. [7] Marty and three other people took a math test. Everyone got a non-negative integer score. The
average score was 20. Marty was told the average score and concluded that everyone else scored below
average. What was the minimum possible score Marty could have gotten in order to definitively reach

this conclusion?

8. [7] Evaluate the expression

where the digit 2 appears 2013 times.
9. [7] Find the remainder when 12 + 32 + 52 + - - - + 992 is divided by 1000.
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[8] How many pairs of real numbers (x,y) satisfy the equation

yt—y? =ay —ay =2y —ay =2t — 2% =07

[8] David has a unit triangular array of 10 points, 4 on each side. A looping path is a sequence
Ay, Ag, ..., A1p containing each of the 10 points exactly once, such that A; and A;; are adjacent
(exactly 1 unit apart) for ¢ = 1,2,...,10. (Here A;; = A;.) Find the number of looping paths in this

array.

[8] Given that 622 + 1222 = 18728, find positive integers (n,m) such that n? + m? = 9364.
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[9] Let S ={1,2,...,2013}. Find the number of ordered triples (A, B,C') of subsets of S such that
ACBand AUBUC=S6.
[9] Find all triples of positive integers (x,y, z) such that 22 +y — z = 100 and x + y* — z = 124.

[9] Find all real numbers  between 0 and 360 such that v/3 cos 10° = cos 40° + sin z°.
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[10] A bug is on one exterior vertex of solid S, a 3 x 3 x 3 cube that has its center 1 x 1 x 1 cube
removed, and wishes to travel to the opposite exterior vertex. Let O denote the outer surface of S
(formed by the surface of the 3 x 3 x 3 cube). Let L(S) denote the length of the shortest path through
S. (Note that such a path cannot pass through the missing center cube, which is empty space.) Let
L(O) denote the length of the shortest path through O. What is the ratio %?

[10] Find the sum of % over all positive integers n with the property that the decimal representation
of % terminates.

[10] The rightmost nonzero digit in the decimal expansion of 101! is the same as the rightmost nonzero
digit of n!, where n is an integer greater than 101. Find the smallest possible value of n.
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[11] Let p,q,r, s be distinct primes such that pg — rs is divisible by 30. Find the minimum possible
value of p+q+1r+s.

[11] There exist unique nonnegative integers A, B between 0 and 9, inclusive, such that
(1001 - A + 110 - B)? = 57,108, 249.
Find 10- A+ B.
[11] Suppose A, B, C, and D are four circles of radius r > 0 centered about the points (0,r), (r,0),

(0, —r), and (—r,0) in the plane. Let O be a circle centered at (0,0) with radius 2r. In terms of r,
what is the area of the union of circles A, B, C, and D subtracted by the area of circle O that is not
contained in the union of A, B, C, and D?

(The union of two or more regions in the plane is the set of points lying in at least one of the regions.)
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[12] Let S be a subset of {1,2,3,...,12} such that it is impossible to partition S into k disjoint
subsets, each of whose elements sum to the same value, for any integer £ > 2. Find the maximum
possible sum of the elements of S.

[12] The number 989 - 1001 - 1007 4 320 can be written as the product of three distinct primes p, g, r
with p < ¢ < r. Find (p, q,r).

[12] Find the number of subsets S of {1,2,...6} satisfying the following conditions:

e S is non-empty.
e No subset of S has the property that the sum of its elements is 10.
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[13] Let a,b be positive reals with a > b > %a. Place two squares of side lengths a, b next to each
other, such that the larger square has lower left corner at (0,0) and the smaller square has lower left
corner at (a,0). Draw the line passing through (0,a) and (a + b,0). The region in the two squares

lying above the line has area 2013. If (a,b) is the unique pair maximizing a + b, compute .

[13] Trapezoid ABCD is inscribed in the parabola y = 22 such that A = (a,a®), B = (b,b?),
C = (=b,b%), and D = (—a,a?) for some positive reals a,b with a > b. If AD + BC' = AB + CD, and
AB = %7 what is a?

[13] Find all triples of real numbers (a, b, ¢) such that a? + 2b? — 2bc = 16 and 2ab — ¢? = 16.
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[15] Triangle ABC has AB =4, BC = 3, and a right angle at B. Circles w; and ws of equal radii are
drawn such that wq is tangent to AB and AC, ws is tangent to BC' and AC, and w; is tangent to ws.
Find the radius of w;.

[15] Let AXY Z be a right triangle with /XY Z = 90°. Suppose there exists an infinite sequence of
equilateral triangles X(YyTy, X1Y171, ... such that Xg = X, Yy =Y, X; lies on the segment X Z for all
1 >0, Y; lies on the segment Y Z for all + > 0, X,Y; is perpendicular to YZ for all i > 0, T; and Y are
separated by line X Z for all ¢ > 0, and X; lies on segment Y; _17;_1 for ¢ > 1.

Let P denote the union of the equilateral triangles. If the area of P is equal to the area of XY Z, find
XY

YZ-

[15] Find the number of ordered triples of integers (a, b, c) with 1 < a,b,c < 100 and a?b+ b%*c+ c?a =
ab? + bc? + ca?.
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[17] Chords AB and CD of circle w intersect at E such that AE =8, BE = 2, CD = 10, and
ZAEC =90°. Let R be a rectangle inside w with sides parallel to AB and C'D, such that no point in
the interior of R lies on AB, C'D, or the boundary of w. What is the maximum possible area of R?

[17] Suppose that x and y are chosen randomly and uniformly from (0,1). What is the probability
that {\/%J is even? Hint: Y 0| 25 = %2.

[17] On each side of a 6 by 8 rectangle, construct an equilateral triangle with that side as one edge
such that the interior of the triangle intersects the interior of the rectangle. What is the total area of
all regions that are contained in exactly 3 of the 4 equilateral triangles?
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[20] Find the number of positive integers less than 1000000 that are divisible by some perfect cube
greater than 1. Your score will be max {0, |20 — 200|1 — %]}, where k is your answer and S is the
actual answer.

[20] Consider the following 4 by 4 grid with one corner square removed:

You may start at any square in this grid and at each move, you may either stop or travel to an adjacent
square (sharing a side, not just a corner) that you have not already visited (the square you start at is
automatically marked as visited). Determine the distinct number of paths you can take. Your score
will be max {0, [20 — 2001 — %H }, where k is your answer and S is the actual answer.

[20] Pick a subset of at least four of the following seven numbers, order them from least to greatest,
and write down their labels (corresponding letters from A through G) in that order: (A) m; (B)
V24 /3; (C) V10; (D) £2; (E) 16tan™" £ — 4tan™" 515; (F) In(23); and (G) 2Ve. If the ordering of
the numbers you picked is correct and you picked at least 4 numbers, then your score for this problem
will be (N — 2)(N — 3), where N is the size of your subset; otherwise, your score is 0.



