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1. [5] Evaluate 2 + 5 + 8 + · · ·+ 101.

Answer: 1751 There are 102
3 = 34 terms with average 2+101

2 , so their sum is 17 · 103 = 1751.

2. [5] Two fair six-sided dice are rolled. What is the probability that their sum is at least 10?

Answer: 1
6 There are 3, 2, 1 outcomes with sum 10, 11, 12, so the probability is 3+2+1

62 = 1
6 .

3. [5] A square is inscribed in a circle of radius 1. Find the perimeter of the square.

Answer: 4
√

2 OR 8√
2

The square has diagonal length 2, so side length
√

2 and perimeter 4
√

2.

4. [6] Find the minimum possible value of (x2 + 6x+ 2)2 over all real numbers x.

Answer: 0 This is ((x+ 3)2 − 7)2 ≥ 0, with equality at x+ 3 = ±
√

7.

5. [6] How many positive integers less than 100 are relatively prime to 200? (Two numbers are relatively
prime if their greatest common factor is 1.)

Answer: 40 1 ≤ n < 100 is relatively prime to 200 if and only if it’s relatively prime to 100
(200, 100 have the same prime factors). Thus our answer is φ(100) = 100 1

2
4
5 = 40.

6. [6] A right triangle has area 5 and a hypotenuse of length 5. Find its perimeter.

Answer: 5 + 3
√

5 If x, y denote the legs, then xy = 10 and x2 + y2 = 25, so x+ y +
√
x2 + y2 =√

(x2 + y2) + 2xy + 5 =
√

45 + 5 = 5 + 3
√

5.

7. [7] Marty and three other people took a math test. Everyone got a non-negative integer score. The
average score was 20. Marty was told the average score and concluded that everyone else scored below
average. What was the minimum possible score Marty could have gotten in order to definitively reach
this conclusion?

Answer: 61 Suppose for the sake of contradiction Marty obtained a score of 60 or lower. Since
the mean is 20, the total score of the 4 test takers must be 80. Then there exists the possibility of 2
students getting 0, and the last student getting a score of 20 or higher. If so, Marty could not have
concluded with certainty that everyone else scored below average.

With a score of 61, any of the other three students must have scored points lower or equal to 19 points.
Thus Marty is able to conclude that everyone else scored below average.

8. [7] Evaluate the expression
1

2−
1

2−
1

2− · · ·
1

2−
1

2

,

where the digit 2 appears 2013 times.

Answer: 2013
2014 Let f(n) denote the corresponding expression with the digit 2 appearing exactly n

times. Then f(1) = 1
2 and for n > 1, f(n) = 1

2−f(n−1) . By induction using the identity 1
2−N−1

N

= N
N+1 ,

f(n) = n
n+1 for all n ≥ 1, so f(2013) = 2013

2014 .
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9. [7] Find the remainder when 12 + 32 + 52 + · · ·+ 992 is divided by 1000.

Answer: 650 We have S =
∑49
i=0(2i + 1)2 =

∑49
i=0 4i2 + 4i + 1 = 4 · 49·50·996 + 4 · 49·502 + 50 ≡

700 + 900 + 50 (mod 1000) ≡ 650 (mod 1000).

10. [8] How many pairs of real numbers (x, y) satisfy the equation

y4 − y2 = xy3 − xy = x3y − xy = x4 − x2 = 0?

Answer: 9 We can see that if they solve the first and fourth equations, they are automatically
solutions to the second and third equations. Hence, the solutions are just the 32 = 9 points where x, y
can be any of −1, 0, 1.

11. [8] David has a unit triangular array of 10 points, 4 on each side. A looping path is a sequence
A1, A2, . . . , A10 containing each of the 10 points exactly once, such that Ai and Ai+1 are adjacent
(exactly 1 unit apart) for i = 1, 2, . . . , 10. (Here A11 = A1.) Find the number of looping paths in this
array.

Answer: 60 There are 10 · 2 times as many loop sequences as loops. To count the number of
loops, first focus on the three corners of the array: their edges are uniquely determined. It’s now easy
to see there are 3 loops (they form “V -shapes”), so the answer is 10 · 2 · 3 = 60.

12. [8] Given that 622 + 1222 = 18728, find positive integers (n,m) such that n2 +m2 = 9364.

Answer: (30, 92) OR (92, 30) If a2 + b2 = 2c, then (a+b2 )2 + (a−b2 )2 = 2a2+2b2

4 = a2+b2

2 = c. Thus,

n = 62+122
2 = 92 and m = 122−62

2 = 30 works.

13. [9] Let S = {1, 2, . . . , 2013}. Find the number of ordered triples (A,B,C) of subsets of S such that
A ⊆ B and A ∪B ∪ C = S.

Answer: 52013 OR 125671 Let n = 2013. Each of the n elements can be independently placed in 5
spots: there are 23 − 1 choices with element x in at least one set, and we subtract the 21 choices with
element x in set A but not B. Specifying where the elements go uniquely determines A,B,C, so there
are 5n = 52013 ordered triples.

14. [9] Find all triples of positive integers (x, y, z) such that x2 + y − z = 100 and x+ y2 − z = 124.

Answer: (12, 13, 57) Cancel z to get 24 = (y − x)(y + x − 1). Since x, y are positive, we have

y + x− 1 ≥ 1 + 1− 1 > 0, so 0 < y − x < y + x− 1. But y − x and y + x− 1 have opposite parity, so
(y − x, y + x− 1) ∈ {(1, 24), (3, 8)} yields (y, x) ∈ {(13, 12), (6, 3)}.
Finally, 0 < z = x2 + y − 100 forces (x, y, z) = (12, 13, 57).

15. [9] Find all real numbers x between 0 and 360 such that
√

3 cos 10◦ = cos 40◦ + sinx◦.

Answer: 70, 110 (need both, but order doesn’t matter) Note that
√

3 = 2 cos 30◦, so sinx◦ =

cos 20◦ =⇒ x ∈ {70, 110}.

16. [10] A bug is on one exterior vertex of solid S, a 3 × 3 × 3 cube that has its center 1 × 1 × 1 cube
removed, and wishes to travel to the opposite exterior vertex. Let O denote the outer surface of S
(formed by the surface of the 3× 3× 3 cube). Let L(S) denote the length of the shortest path through
S. (Note that such a path cannot pass through the missing center cube, which is empty space.) Let

L(O) denote the length of the shortest path through O. What is the ratio L(S)
L(O)?

Answer:
√
29

3
√
5

OR
√
145
15 By (*), the shortest route in O has length 2

√
1.52 + 32 = 3

√
5. By (**),

the shortest route overall (in S) has length 2
√

1.52 + 12 + 22 =
√

32 + 22 + 42 =
√

29. Therefore the

desired ratio is
√
29

3
√
5

=
√
145
15 .
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(*) Suppose we’re trying to get from (0, 0, 0) to (3, 3, 3) through O. Then one minimal-length path
through O is (0, 0, 0)→ (1.5, 0, 3)→ (3, 3, 3).

(**) Suppose we’re trying to get from (0, 0, 0) to (3, 3, 3) through S. Then the inner hole is [1, 2] ×
[1, 2]× [1, 2], and one minimal-length path is (0, 0, 0)→ (1.5, 1, 2)→ (3, 3, 3).

To justify (*), note that we must at some point hit one of the three faces incident to (3, 3, 3), and
therefore one of the edges of those faces. Without loss of generality, the first of these edges (which
must lie on a face incident to (0, 0, 0)) is {(t, 0, 3) : 0 ≤ t ≤ 3}. Then the shortest path goes directly
from the origin to the edge, and then directly to (3, 3, 3); t = 1.5 minimizes the resulting distance. (One
may either appeal to the classic geometric “unfolding” argument, or just direct algebraic minimization.)

To justify (**), consider the portion of S “visible” from (0, 0, 0). It sees 3 mutually adjacent faces of
the center cube “hole” (when looking inside the solid) and its 6 edges. (3, 3, 3) can also see these 6
edges. The shortest path through S must be a straight line from the start vertex to some point P on
the surface of the center cube (+), and it’s easy to see, using the triangle inequality, that this point P
must be on one of the 6 edges. Without loss of generality, it’s on the edge {(t, 1, 2) : 1 ≤ t ≤ 2}. The
remaining path is a straight line to (3, 3, 3). Then once again, t = 1.5 minimizes the distance. (And
once again, one may either appeal to the classic geometric “unfolding” argument—though this time
it’s a little trickier—or just direct algebraic minimization.)

Comment. (+) can be proven in many ways. The rough physical intuition is that “a fully stretched
rubber band” with ends at (0, 0, 0) and (3, 3, 3) must not have any “wiggle room” (and so touches the
inner cube). Perhaps more rigorously, we can try shortening a path that does not hit the center cube,
for instance by “projecting the path down” towards the closest edge of the inner cube.

17. [10] Find the sum of 1
n over all positive integers n with the property that the decimal representation

of 1
n terminates.

Answer: 5
2 The decimal representation of 1

n terminates if and only if n = 2i5j for some nonnegative

integers i, j, so our desired sum is∑
i≥0

∑
j≥0

2−i5−j =
∑
i≥0

2−i
∑
j≥0

5−j = (1− 2−1)−1(1− 5−1)−1 =
2

1

5

4
=

5

2
.

18. [10] The rightmost nonzero digit in the decimal expansion of 101! is the same as the rightmost nonzero
digit of n!, where n is an integer greater than 101. Find the smallest possible value of n.

Answer: 103 101! has more factors of 2 than 5, so its rightmost nonzero digit is one of 2, 4, 6, 8.
Notice that if the rightmost nonzero digit of 101! is 2k (1 ≤ k ≤ 4), then 102! has rightmost nonzero
digit 102(2k) ≡ 4k (mod 10), and 103! has rightmost nonzero digit 103(4k) ≡ 2k (mod 10). Hence
n = 103.

19. [11] Let p, q, r, s be distinct primes such that pq − rs is divisible by 30. Find the minimum possible
value of p+ q + r + s.

Answer: 54 The key is to realize none of the primes can be 2, 3, or 5, or else we would have
to use one of them twice. Hence p, q, r, s must lie among 7, 11, 13, 17, 19, 23, 29, . . .. These options
give remainders of 1 (mod 2) (obviously), 1,−1, 1,−1, 1,−1,−1, . . . modulo 3, and 2, 1, 3, 2, 4, 3, 4, . . .
modulo 5. We automatically have 2 | pq − rs, and we have 3 | pq − rs if and only if pqrs ≡ (pq)2 ≡ 1
(mod 3), i.e. there are an even number of −1 (mod 3)’s among p, q, r, s.

If {p, q, r, s} = {7, 11, 13, 17}, then we cannot have 5 | pq − rs, or else 12 ≡ pqrs ≡ (pq)2 (mod 5) is a
quadratic residue. Our next smallest choice (in terms of p+ q + r + s) is {7, 11, 17, 19}, which works:
7 · 17− 11 · 19 ≡ 22 − 4 ≡ 0 (mod 5). This gives an answer of 7 + 17 + 11 + 19 = 54.

20. [11] There exist unique nonnegative integers A,B between 0 and 9, inclusive, such that

(1001 ·A+ 110 ·B)2 = 57, 108, 249.

Find 10 ·A+B.
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Answer: 75 We only need to bound for AB00; in other words, AB2 ≤ 5710 but (AB+1)2 ≥ 5710.
A quick check gives AB = 75. (Lots of ways to get this...)

21. [11] Suppose A, B, C, and D are four circles of radius r > 0 centered about the points (0, r), (r, 0),
(0,−r), and (−r, 0) in the plane. Let O be a circle centered at (0, 0) with radius 2r. In terms of r,
what is the area of the union of circles A, B, C, and D subtracted by the area of circle O that is not
contained in the union of A, B, C, and D?

(The union of two or more regions in the plane is the set of points lying in at least one of the regions.)

Answer: 8r2 Solution 1. Let U denote the union of the four circles, so we seek

U − ([O]− U) = 2U − [O] = 2[(2r)2 + 4 · 1

2
πr2]− π(2r)2 = 8r2.

(Here we decompose U into the square S with vertices at (±r,±r) and the four semicircular regions of
radius r bordering the four sides of U .)

Solution 2. There are three different kinds of regions: let x be an area of a small circle that does not
contain the two intersections with the other two small circles, y be an area of intersection of two small
circles, and z be one of those four areas that is inside the big circle but outside all of the small circles.

Then the key observation is y = z. Indeed, adopting the union U notation from the previous solution,
we have 4z = [O] − U = π(2r)2 − U , and by the inclusion-exclusion principle, 4y = [A] + [B] + [C] +
[D] − U = 4π2 − U , so y = z. Now U = (4x + 4y) − (4z) = 4x. But the area of each x is simply 2r2

by moving the curved outward parts to fit into the curved inward parts to get a r × 2r rectangle. So
the answer is 8r2.

22. [12] Let S be a subset of {1, 2, 3, . . . , 12} such that it is impossible to partition S into k disjoint
subsets, each of whose elements sum to the same value, for any integer k ≥ 2. Find the maximum
possible sum of the elements of S.

Answer: 77 We note that the maximum possible sum is 78 (the entire set). However, this could
be partitioned into 2 subsets with sum 39: {1, 2, 3, 10, 11, 12} and {4, 5, 6, 7, 8, 9}. The next largest
possible sum is 77 (the entire set except 1). If k ≥ 2 subsets each had equal sum, then they would
have to be 7 subsets with sum 11 each or 11 subsets with sum 7 each. However, the subset containing
12 will have sum greater than 11; hence there is no way to partition the subset {2, . . . , 12} into equal
subsets.

23. [12] The number 989 · 1001 · 1007 + 320 can be written as the product of three distinct primes p, q, r
with p < q < r. Find (p, q, r).

Answer: (991, 997, 1009) Let f(x) = x(x − 12)(x + 6) + 320 = x3 − 6x2 − 72x + 320, so that

f(1001) = 989 · 1001 · 1007 + 320. But f(4) = 4(−8)(10) + 320 = 0, so f(x) = (x− 4)(x2 − 2x− 80) =
(x− 4)(x− 10)(x+ 8).

Thus f(1001) = 991 · 997 · 1009, as desired.

24. [12] Find the number of subsets S of {1, 2, . . . 6} satisfying the following conditions:

• S is non-empty.

• No subset of S has the property that the sum of its elements is 10.

Answer: 34 We do casework based on the largest element of S. Call a set n-free if none of its
subsets have elements summing to n.

Case 1: The largest element of S is 6. Then 4 /∈ S. If 5 /∈ S, then we wish to find all 4-free subsets
of {1, 2, 3} (note that 1 + 2 + 3 = 6 < 10). We just cannot include both 1, 3, so we have 2(22 − 1) = 6
choices here.

If 5 ∈ S, then we want 4, 5-free subsets of {1, 2, 3}. The only 4-but-not-5-free subset is {2, 3}, so we
have 6− 1 choices here, for a case total of 6 + 5 = 11.
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Case 2: The largest element of S is 5. We seek 5, 10-free subsets of {1, 2, 3, 4}. We just cannot
have both 1, 4 or both 2, 3 (note that getting 10 requires the whole set), so we have (22 − 1)2 = 9
subsets in this case.

Case 3: The largest element of S is at most 4. (So we want a 4-free subset of {1, 2, 3, 4}.) The
only way to sum to 10 with 1, 2, 3, 4 is by using all the terms, so we simply discount the empty set and
{1, 2, 3, 4}, for a total of 24 − 2 = 14 subsets.

In conclusion, the total number of subsets is 11 + 9 + 14 = 34.

25. [13] Let a, b be positive reals with a > b > 1
2a. Place two squares of side lengths a, b next to each

other, such that the larger square has lower left corner at (0, 0) and the smaller square has lower left
corner at (a, 0). Draw the line passing through (0, a) and (a + b, 0). The region in the two squares
lying above the line has area 2013. If (a, b) is the unique pair maximizing a+ b, compute a

b .

Answer: 5
3 Let t = a

b ∈ (1, 2); we will rewrite the sum a + b as a function of t. The area

condition easily translates to a2−ab+2b2

2 = 2013, or b2(t2 − t + 2) = 4026 ⇐⇒ b =
√

4026
t2−t+2 . Thus

a+ b is a function f(t) = (1 + t)
√

4026
t2−t+2 of t, and our answer is simply the value of t maximizing f ,

or equivalently g(t) = f2

4026 = (1+t)2

t2−t+2 , over the interval (1, 2). (In general, such maximizers/maximums
need not exist, but we shall prove there’s a unique maximum here.)

We claim that λ = 16
7 is the maximum of (1+t)2

t2−t+2 . Indeed,

λ− g(t) =
(λ− 1)t2 − (λ+ 2)t+ (2λ− 1)

t2 − t+ 2

=
1

7

9t2 − 30t+ 25

t2 − t+ 2
=

1

7

(3t− 5)2

(t− 1
2 )2 + 7

4

≥ 0

for all reals t (not just t ∈ (1, 2)), with equality at t = 5
3 ∈ (1, 2).

Comment. To motivate the choice of λ, suppose λ were the maximum of f , attained at t0 ∈ (1, 2);
then h(t) = λ(t2 − t+ 2)− (t+ 1)2 is quadratic and nonnegative on (1, 2), but zero at t = t0. If g is a
nontrivial quadratic (nonzero leading coefficient), then t0 must be a double root, so g has determinant
0. Of course, g could also be constant or linear over (1, 2), but we can easily rule out both of these
possibilities.

Alternatively, we can simply take a derivative of f to find critical points.

26. [13] Trapezoid ABCD is inscribed in the parabola y = x2 such that A = (a, a2), B = (b, b2),
C = (−b, b2), and D = (−a, a2) for some positive reals a, b with a > b. If AD +BC = AB + CD, and
AB = 3

4 , what is a?

Answer: 27
40 Let t = 3

4 , so 2a + 2b = 2
√

(a− b)2 + (a2 − b2)2 = 2t gives a = b = t and

t2 = (a− b)2[1 + (a+ b)2] = (a− b)2[1 + t2]. Thus a =
t+ t√

1+t2

2 =
3
4+

3
5

2 = 27
40 .

27. [13] Find all triples of real numbers (a, b, c) such that a2 + 2b2 − 2bc = 16 and 2ab− c2 = 16.

Answer: (4, 4, 4), (−4,−4,−4) (need both, but order doesn’t matter) a2 + 2b2 − 2bc and 2ab− c2

are both homogeneous degree 2 polynomials in a, b, c, so we focus on the homogeneous equation a2 +
2b2−2bc = 2ab− c2, or (a− b)2 + (b− c)2 = 0. So a = b = c, and a2 = 2ab− c2 = 16 gives the solutions
(4, 4, 4) and (−4,−4,−4).

28. [15] Triangle ABC has AB = 4, BC = 3, and a right angle at B. Circles ω1 and ω2 of equal radii are
drawn such that ω1 is tangent to AB and AC, ω2 is tangent to BC and AC, and ω1 is tangent to ω2.
Find the radius of ω1.

Answer: 5
7 Solution 1. Denote by r the common radius of ω1, ω2, and let O1, O2 be the centers

of ω1 and ω2 respectively. Suppose ωi hits AC at Bi for i = 1, 2, so that O1O2 = B1B2 = 2r.
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Extend angle bisector AO1 to hit BC at P . By the angle bisector theorem and triangle similarity
4AB1O1 ∼ 4ABP , we deduce r

AB1
= BP

AB = 3
4+5 . Similarly, r

CB2
= 4

3+5 , so

5 = AC = AB1 +B1B2 +B2C = 3r + 2r + 2r = 7r,

or r = 5
7 .

Solution 2. Use the same notation as in the previous solution, and let α = 1
2∠A. By constructing

right triangles with hypotenuses AO1, O1O2, and O2C and legs parallel to AB and BC, we obtain

4 = AB = r cotα+ 2r cos∠A+ r.

But cotα = 1+cos 2α
sin 2α =

1+ 4
5

3
5

= 3 and cos∠A = 4
5 , so the above equation simplifies to

4 = r(3 +
8

5
+ 1) =

28r

5
,

or r = 5
7 .

29. [15] Let 4XY Z be a right triangle with ∠XY Z = 90◦. Suppose there exists an infinite sequence of
equilateral triangles X0Y0T0, X1Y1T1, . . . such that X0 = X,Y0 = Y , Xi lies on the segment XZ for all
i ≥ 0, Yi lies on the segment Y Z for all i ≥ 0, XiYi is perpendicular to Y Z for all i ≥ 0, Ti and Y are
separated by line XZ for all i ≥ 0, and Xi lies on segment Yi−1Ti−1 for i ≥ 1.

Let P denote the union of the equilateral triangles. If the area of P is equal to the area of XY Z, find
XY
Y Z .

Answer: 1 For any region R, let [R] denote its area.

Let a = XY , b = Y Z, ra = X1Y1. Then [P] = [XY T0](1 + r2 + r4 + · · · ), [XY Z] = [XY Y1X1](1 +
r2 + r4 + · · · ), Y Y1 = ra

√
3, and b = ra

√
3(1 + r + r2 + · · · ) (although we can also get this by similar

triangles).

Hence a2
√
3

4 = 1
2 (ra+ a)(ra

√
3), or 2r(r + 1) = 1 =⇒ r =

√
3−1
2 . Thus XY

Y Z = a
b = 1−r

r
√
3

= 1.

30. [15] Find the number of ordered triples of integers (a, b, c) with 1 ≤ a, b, c ≤ 100 and a2b+ b2c+ c2a =
ab2 + bc2 + ca2.

Answer: 29800 This factors as (a− b)(b− c)(c− a) = 0. By the inclusion-exclusion principle, we
get 3 · 1002 − 3 · 100 + 100 = 29800.

31. [17] Chords AB and CD of circle ω intersect at E such that AE = 8, BE = 2, CD = 10, and
∠AEC = 90◦. Let R be a rectangle inside ω with sides parallel to AB and CD, such that no point in
the interior of R lies on AB, CD, or the boundary of ω. What is the maximum possible area of R?

Answer: 26 + 6
√

17 By power of a point, (CE)(ED) = (AE)(EB) = 16, and CE+ED = CD =
10. Thus CE,ED are 2, 8. Without loss of generality, assume CE = 8 and DE = 2.

Assume our circle is centered at the origin, with points A = (−3, 5), B = (−3,−5), C = (5,−3),
D = (−5,−3), and the equation of the circle is x2 + y2 = 34. Clearly the largest possible rectangle
must lie in the first quadrant, and if we let (x, y) be the upper-right corner of the rectangle, then the

area of the rectangle is (x+ 3)(y+ 3) = 9 + 6(x+ y) +xy ≤ 9 + 12
√

x2+y2

2 + x2+y2

2 = 26 + 6
√

17, where

equality holds if and only if x = y =
√

17.

32. [17] Suppose that x and y are chosen randomly and uniformly from (0, 1). What is the probability

that
⌊√

x
y

⌋
is even? Hint:

∑∞
n=1

1
n2 = π2

6 .

Answer: 1− π2

24 OR 24−π2

24 Note that for every positive integer n, the probability that b
√

x
y c = n

is just the area of the triangle formed between (0, 0), (1, 1
n2 ), (1, 1

(n+1)2 ), which is just 1
2

(
1
n2 − 1

(n+1)2

)
.
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Thus the probability that b
√

x
y c is odd is

∞∑
k=1

1

2

(
1

(2k − 1)2
− 1

(2k)2

)
=

1

2

∞∑
k=1

(
1

(2k − 1)2
+

1

(2k)2

)
−
∞∑
k=1

1

(2k)2

=
1

2

∞∑
n=1

1

n2
− 1

4

∞∑
k=1

1

k2

=
π2

12
− π2

24
=
π2

24
.

Thus our answer is just 1− π2

24 .

33. [17] On each side of a 6 by 8 rectangle, construct an equilateral triangle with that side as one edge
such that the interior of the triangle intersects the interior of the rectangle. What is the total area of
all regions that are contained in exactly 3 of the 4 equilateral triangles?

Answer: 96
√
3−154√
3

OR 288−154
√
3

3 OR 96− 154√
3

OR 96− 154
√
3

3 Let the rectangle be ABCD with

AB = 8 and BC = 6. Let the four equilateral triangles be ABP1, BCP2, CDP3, and DAP4 (for
convenience, call them the P1-, P2-, P3-, P4- triangles). Let W = AP1 ∩DP3, X = AP1 ∩DP4, and
Y = DP4 ∩ CP2. Reflect X,Y over the line P2P4 (the line halfway between AB and DC) to points
X ′, Y ′.

First we analyze the basic configuration of the diagram. Since AB = 8 < 2 ·6
√
3
2 , the P2-, P4- triangles

intersect. Furthermore, AP1 ⊥ BP2, so if T = BP2 ∩ AP1, then BP2 = 6 < 4
√

3 = BT . Therefore P2

lies inside triangle P1BA, and by symmetry, also triangle P3DC.

It follows that the area we wish to compute is the union of two (congruent) concave hexagons, one of
which is WXY P2Y

′X ′. (The other is its reflection over Y Y ′, the mid-line of AD and BC.) So we seek

2[WXY P2Y
′X ′] = 2([WXP4X

′]− [P2Y P4Y
′]).

It’s easy to see that [WXP4X
′] = 1

3 [ADP4] = 1
3
62
√
3

4 = 3
√

3, since WXP4X
′ and its reflections over

lines DWX ′ and AWX partition 4ADP4.

It remains to consider P2Y P4Y
′, a rhombus with (perpendicular) diagonals P2P4 and Y Y ′. If O denotes

the intersection of these two diagonals (also the center of ABCD), thenOP2 is P2B
√
3
2 −

1
2AB = 3

√
3−4,

the difference between the lengths of the P2-altitude in 4CBP2 and the distance between the parallel
lines Y Y ′, CB. Easy angle chasing gives OY = OP2√

3
, so

[P2Y P4Y
′] = 4 · OP2 ·OY

2
=

2√
3
OP 2

2 =
2√
3

(3
√

3− 4)2 =
86− 48

√
3√

3
,

and our desired area is

2[WXP4X
′]− 2[P2Y P4Y

′] = 6
√

3− 172− 96
√

3√
3

=
96
√

3− 154√
3

,

or 288−154
√
3

3 .

34. [20] Find the number of positive integers less than 1000000 that are divisible by some perfect cube
greater than 1. Your score will be max

{
0, b20− 200|1− k

S |c
}

, where k is your answer and S is the
actual answer.

Answer: 168089 Using the following code, we get the answer (denoted by the variable ans):

ans = 0

for n in xrange(1,1000000):
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divisible_by_cube = True

for i in xrange(2,101):

if n%(i*i*i)==0:

divisible_by_cube = False

break

if divisible_by_cube: ans = ans + 1

print ans

This gives the output

168089

Alternatively, let N = 1000000 and denote by P the set of primes. Then by PIE, the number of
n ∈ (0, N) divisible by a nontrivial cube, or equivalently, by p3 for some p ∈ P , is∑

p∈P
bN − 1

p3
c −

∑
p<q∈P

bN − 1

p3q3
c ± · · · ,

which deviates from∑
p∈P

N − 1

p3
−
∑

p<q∈P

N − 1

p3q3
± · · · = (N − 1)(1−

∏
p∈P

(1− p−3))

by at most the sum of

• N1/3 supt∈R|t− btc| = N1/3, for terms b N−1
p31···p3r

c with p1 · · · pr ≤ (N − 1)1/3, and

• (N − 1)
∑
k>(N−1)1/3 k

−3 < (N − 1)[(N − 1)−1 +
∫∞
(N−1)1/3 x

−3 dx] = 1 + (N − 1) (N−1)−2/3

2 =

O(N1/3), for the remaining terms.

So we are really interested in 106 − 106
∏
p∈P (1 − p−3) (which, for completeness, is 168092.627 . . .).

There are a few simple ways to approximate this:

• We can use a partial product of
∏
p∈P (1 − p−3). Using just 1 − 2−3 = 0.875 gives an answer of

125000 (this is also just the number of x ≤ N divisible by 23 = 8), (1 − 2−3)(1 − 3−3) ≈ 0.843
gives 157000 (around the number of x divisible by 23 or 33), etc. This will give a lower bound,
of course, so we can guess a bit higher. For instance, while 157000 gives a score of around 7,
rounding up to 160000 gives ≈ 10.

• We can note that
∏
p∈P (1− p−3) = ζ(3)−1 is the inverse of 1 + 2−3 + 3−3 + · · · . This is a bit less

efficient, but successive partial sums (starting with 1 + 2−3) give around 111000, 139000, 150000,
157000, etc. Again, this gives a lower bound, so we can guess a little higher.

• We can optimize the previous approach with integral approximation after the rth term: ζ(3) is
the sum of 1+2−3 + · · ·+r−3 plus something between

∫∞
r+1

x−3 dx = 1
2 (r+1)−2 and

∫∞
r
x−3 dx =

1
2r
−2. Then starting with r = 1, we get intervals of around (111000, 334000), (152000, 200000),

(161000, 179000), (165000, 173000), etc. Then we can take something like the average of the two
endpoints as our guess; such a strategy gets a score of around 10 for r = 2 already, and ≈ 17 for
r = 3.

35. [20] Consider the following 4 by 4 grid with one corner square removed:

You may start at any square in this grid and at each move, you may either stop or travel to an adjacent
square (sharing a side, not just a corner) that you have not already visited (the square you start at is
automatically marked as visited). Determine the distinct number of paths you can take. Your score
will be max

{
0, b20− 200|1− k

S |c
}

, where k is your answer and S is the actual answer.

Answer: 14007
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36. [20] Pick a subset of at least four of the following seven numbers, order them from least to greatest,
and write down their labels (corresponding letters from A through G) in that order: (A) π; (B)√

2 +
√

3; (C)
√

10; (D) 355
113 ; (E) 16 tan−1 1

5 − 4 tan−1 1
240 ; (F) ln(23); and (G) 2

√
e. If the ordering of

the numbers you picked is correct and you picked at least 4 numbers, then your score for this problem
will be (N − 2)(N − 3), where N is the size of your subset; otherwise, your score is 0.

Answer: F,G,A,D,E,B,C OR F < G < A < D < E < B < C OR C > B > E > D > A > G > F

We have ln(23) < 2
√
e < π < 355

113 < 16 tan−1 1
5 − 4 tan−1 1

240 <
√

2 +
√

3 <
√

10.
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