HMMT November 2013
 Saturday 9 November 2013

 Team Round

 Team Round}

1. [3] Tim the Beaver can make three different types of geometrical figures: squares, regular hexagons, and regular octagons. Tim makes a random sequence $F_{0}, F_{1}, F_{2}, F_{3}, \ldots$ of figures as follows:

- F_{0} is a square.
- For every positive integer i, F_{i} is randomly chosen to be one of the 2 figures distinct from F_{i-1} (each chosen with equal probability $\frac{1}{2}$).
- Tim takes 4 seconds to make squares, 6 to make hexagons, and 8 to make octagons. He makes one figure after another, with no breaks in between.

Suppose that exactly 17 seconds after he starts making F_{0}, Tim is making a figure with n sides. What is the expected value of n ?
Answer: 7 We write $F_{i}=n$ as shorthand for "the i th figure is an n-sided polygon."
If $F_{1}=8$, the $F_{2}=6$ or $F_{2}=4$. If $F_{2}=6$, Tim is making a 6 -gon at time 13 (probability contribution $1 / 4)$. If $F_{2}=4, F_{3}=6$ or $F_{3}=8$ will take the time 13 mark ($1 / 8$ contribution each).
If $F_{1}=6, F_{2}=8$ or $F_{2}=4$. If $F_{2}=8$, it takes the 13 mark $\left(1 / 4\right.$ contribution). If $F_{2}=4, F_{3}=6$ or $F_{3}=8$ will take the 13 mark ($1 / 8$ contribution each).
Thus, the expected value of the number of sides at time 13 is $0(4)+\left(\frac{1}{4}+\frac{1}{8}+\frac{1}{8}\right)(6)+\left(\frac{1}{8}+\frac{1}{4}+\frac{1}{8}\right)(8)=7$.
2. [4] Gary plays the following game with a fair n-sided die whose faces are labeled with the positive integers between 1 and n, inclusive: if $n=1$, he stops; otherwise he rolls the die, and starts over with a k-sided die, where k is the number his n-sided die lands on. (In particular, if he gets $k=1$, he will stop rolling the die.) If he starts out with a 6 -sided die, what is the expected number of rolls he makes?
Answer: $\quad \frac{197}{60}$ If we let a_{n} be the expected number of rolls starting with an n-sided die, we see immediately that $a_{1}=0$, and $a_{n}=1+\frac{1}{n} \sum_{i=1}^{n} a_{i}$ for $n>1$. Thus $a_{2}=2$, and for $n \geq 3$, $a_{n}=1+\frac{1}{n} a_{n}+\frac{n-1}{n}\left(a_{n-1}-1\right)$, or $a_{n}=a_{n-1}+\frac{1}{n-1}$. Thus $a_{n}=1+\sum_{i=1}^{n-1} \frac{1}{i}$ for $n \geq 2$, so $a_{6}=$ $1+\frac{60+30+20+15+12}{60}=\frac{197}{60}$.
3. [6] The digits $1,2,3,4,5,6$ are randomly chosen (without replacement) to form the three-digit numbers $M=\overline{A B C}$ and $N=\overline{D E F}$. For example, we could have $M=413$ and $N=256$. Find the expected value of $M \cdot N$.
Answer: 143745 By linearity of expectation and symmetry,

$$
\mathbb{E}[M N]=\mathbb{E}[(100 A+10 B+C)(100 D+10 E+F)]=111^{2} \cdot \mathbb{E}[A D]
$$

Since

$$
\mathbb{E}[A D]=\frac{(1+2+3+4+5+6)^{2}-\left(1^{2}+2^{2}+3^{2}+4^{2}+5^{2}+6^{2}\right)}{6 \cdot 5}=\frac{350}{30}
$$

our answer is $111 \cdot 35 \cdot 37=111 \cdot 1295=143745$.
4. [4] Consider triangle $A B C$ with side lengths $A B=4, B C=7$, and $A C=8$. Let M be the midpoint of segment $A B$, and let N be the point on the interior of segment $A C$ that also lies on the circumcircle of triangle $M B C$. Compute $B N$.

Answer: $\frac{\sqrt{210}}{4}$ OR $\frac{\sqrt{105}}{2 \sqrt{2}}$ Let $\angle B A C=\theta$. Then, $\cos \theta=\frac{4^{2}+8^{2}-7^{2}}{2 \cdot 4 \cdot 8}$. Since $A M=\frac{4}{2}=2$, and power of a point gives $A M \cdot A B=A N \cdot A C$, we have $A N=\frac{2 \cdot 4}{8}=1$, so $N C=8-1=7$. Law of cosines on triangle $B A N$ gives

$$
B N^{2}=4^{2}+1^{2}-2 \cdot 4 \cdot 1 \cdot \frac{4^{2}+8^{2}-7^{2}}{2 \cdot 4 \cdot 8}=17-\frac{16+15}{8}=15-\frac{15}{8}=\frac{105}{8}
$$

so $B N=\frac{\sqrt{210}}{4}$.
5. [4] In triangle $A B C, \angle B A C=60^{\circ}$. Let ω be a circle tangent to segment $A B$ at point D and segment $A C$ at point E. Suppose ω intersects segment $B C$ at points F and G such that F lies in between B and G. Given that $A D=F G=4$ and $B F=\frac{1}{2}$, find the length of $C G$.
 $C E=\sqrt{x(x+4)}$. By the law of cosines, we have

$$
\left(x+\frac{9}{2}\right)^{2}=\left(\frac{11}{2}\right)^{2}+(4+\sqrt{x(x+4)})^{2}-\frac{11}{2}(4+\sqrt{x(x+4)})
$$

which rearranges to $2(5 x-4)=5 \sqrt{x(x+4)}$. Squaring and noting $x>\frac{4}{5}$ gives $(5 x-16)(15 x-4)=$ $0 \Longrightarrow x=\frac{16}{5}$.
6. [6] Points A, B, C lie on a circle ω such that $B C$ is a diameter. $A B$ is extended past B to point B^{\prime} and $A C$ is extended past C to point C^{\prime} such that line $B^{\prime} C^{\prime}$ is parallel to $B C$ and tangent to ω at point D. If $B^{\prime} D=4$ and $C^{\prime} D=6$, compute $B C$.

Answer: $\frac{24}{5}$ Let $x=A B$ and $y=A C$, and define $t>0$ such that $B B^{\prime}=t x$ and $C C^{\prime}=t y$. Then $10=B^{\prime} C^{\prime}=(1+t) \sqrt{x^{2}+y^{2}}, 4^{2}=t(1+t) x^{2}$, and $6^{2}=t(1+t) y^{2}$ (by power of a point), so $52=4^{2}+6^{2}=t(1+t)\left(x^{2}+y^{2}\right)$ gives $\frac{13}{25}=\frac{52}{10^{2}}=\frac{t(1+t)}{(1+t)^{2}}=\frac{t}{1+t} \Longrightarrow t=\frac{13}{12}$. Hence $B C=\sqrt{x^{2}+y^{2}}=$ $\frac{10}{1+t}=\frac{10}{25 / 12}=\frac{24}{5}$.
7. [7] In equilateral triangle $A B C$, a circle ω is drawn such that it is tangent to all three sides of the triangle. A line is drawn from A to point D on segment $B C$ such that $A D$ intersects ω at points E and F. If $E F=4$ and $A B=8$, determine $|A E-F D|$.

Answer: $\frac{4}{\sqrt{5}}$ OR $\frac{4 \sqrt{5}}{5}$ Without loss of generality, A, E, F, D lie in that order. Let $x=A E, y=D F$.
By power of a point, $x(x+4)=4^{2} \Longrightarrow x=2 \sqrt{5}-2$, and $y(y+4)=(x+4+y)^{2}-(4 \sqrt{3})^{2} \Longrightarrow y=$ $\frac{48-(x+4)^{2}}{2(x+2)}=\frac{12-(1+\sqrt{5})^{2}}{\sqrt{5}}$. It readily follows that $x-y=\frac{4}{\sqrt{5}}=\frac{4 \sqrt{5}}{5}$.
8. [2] Define the sequence $\left\{x_{i}\right\}_{i \geq 0}$ by $x_{0}=x_{1}=x_{2}=1$ and $x_{k}=\frac{x_{k-1}+x_{k-2}+1}{x_{k-3}}$ for $k>2$. Find x_{2013}.

Answer: 9 We have $x_{3}=\frac{1+1+1}{1}=3, x_{4}=\frac{3+1+1}{1}=5, x_{5}=\frac{5+3+1}{1}=9, x_{6}=\frac{9+5+1}{3}=5$. By the symmetry of our recurrence (or just further computation-it doesn't matter much), $x_{7}=3$ and $x_{8}=x_{9}=x_{10}=1$, so our sequence has period 8. Thus $x_{2013}=x_{13}=x_{5}=9$.
9. [7] For an integer $n \geq 0$, let $f(n)$ be the smallest possible value of $|x+y|$, where x and y are integers such that $3 x-2 y=n$. Evaluate $f(0)+f(1)+f(2)+\cdots+f(2013)$.
Answer: 2416 First, we can use $3 x-2 y=n$ to get $x=\frac{n+2 y}{3}$. Thus $|x+y|=\left|\frac{n+5 y}{3}\right|$. Given a certain n, the only restriction on y is that $3|n+2 y \Longleftrightarrow 3| n+5 y$. Hence the set of possible $x+y$ equals the set of integers of the form $\frac{n+5 y}{3}$, which in turn equals the set of integers congruent to $3^{-1} n \equiv 2 n(\bmod 5)$. (Prove this!)
Thus $f(n)=|x+y|$ is minimized when $x+y$ equals the least absolute remainder $(2 n)_{5}$ when $2 n$ is divided by 5 , i.e. the number between -2 and 2 (inclusive) congruent to $2 n$ modulo 5 . We immediately find $f(n)=f(n+5 m)$ for all integers m, and the following initial values of $f: f(0)=\left|(0)_{5}\right|=0$; $f(1)=\left|(2)_{5}\right|=2 ; f(2)=\left|(4)_{5}\right|=1 ; f(3)=\left|(6)_{5}\right|=1$; and $f(4)=\left|(8)_{5}\right|=2$.
Since $2013=403 \cdot 5-2$, it follows that $f(0)+f(1)+\cdots+f(2013)=403[f(0)+f(1)+\cdots+f(4)]-f(2014)=$ $403 \cdot 6-2=2416$.
10. [7] Let $\omega=\cos \frac{2 \pi}{727}+i \sin \frac{2 \pi}{727}$. The imaginary part of the complex number

$$
\prod_{k=8}^{13}\left(1+\omega^{3^{k-1}}+\omega^{2 \cdot 3^{k-1}}\right)
$$

is equal to $\sin \alpha$ for some angle α between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$, inclusive. Find α.
Answer: $\frac{12 \pi}{727}$ Note that $727=3^{6}-2$. Our product telescopes to $\frac{1-\omega^{3^{13}}}{1-\omega^{3^{7}}}=\frac{1-\omega^{12}}{1-\omega^{6}}=1+\omega^{6}$, which has imaginary part $\sin \frac{12 \pi}{727}$, giving $\alpha=\frac{12 \pi}{727}$.

