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1. [2] Two cars are driving directly towards each other such that one is twice as fast as the other. The
distance between their starting points is 4 miles. When the two cars meet, how many miles is the
faster car from its starting point?

Answer: 8
3 Note that the faster car traveled twice the distance of the slower car, and together,

the two cars traveled the total distance between the starting points, which is 4 miles. Let the distance
that the faster car traveled be x. Then, x + x

2 = 4 =⇒ x = 8
3 . Thus, the faster car traveled 8

3 miles
from the starting point.

2. [4] You are standing at a pole and a snail is moving directly away from the pole at 1 cm/s. When the
snail is 1 meter away, you start “Round 1”. In Round n (n ≥ 1), you move directly toward the snail
at n+ 1 cm/s. When you reach the snail, you immediately turn around and move back to the starting
pole at n+ 1 cm/s. When you reach the pole, you immediately turn around and Round n+ 1 begins.

At the start of Round 100, how many meters away is the snail?

Answer: 5050 Suppose the snail is xn meters away at the start of round n, so x1 = 1, and the runner

takes 100xn

(n+1)−1 = 100xn

n seconds to catch up to the snail. But the runner takes the same amount of time

to run back to the start, so during round n, the snail moves a distance of xn+1−xn = 200xn

n
1

100 = 2xn

n .

Finally, we have x100 = 101
99 x99 = 101

99
100
98 x98 = · · · = 101!/2!

99! x1 = 5050.

3. [5] Let ABC be a triangle with AB = 5, BC = 4, and CA = 3. Initially, there is an ant at each
vertex. The ants start walking at a rate of 1 unit per second, in the direction A → B → C → A (so

the ant starting at A moves along ray
−−→
AB, etc.). For a positive real number t less than 3, let A(t) be

the area of the triangle whose vertices are the positions of the ants after t seconds have elapsed. For
what positive real number t less than 3 is A(t) minimized?

Answer: 47
24 We instead maximize the area of the remaining triangles. This area (using 1

2xy sin θ)

is 1
2 (t)(5− t) 3

5 + 1
2 (t)(3− t) 4

5 + 1
2 (t)(4− t)1 = 1

10 (−12t2 +47t), which has a maximum at t = 47
24 ∈ (0, 3).

4. [7] There are 2 runners on the perimeter of a regular hexagon, initially located at adjacent vertices.
Every second, each of the runners independently moves either one vertex to the left, with probability
1
2 , or one vertex to the right, also with probability 1

2 . Find the probability that after a 2013 second
run (in which the runners switch vertices 2013 times each), the runners end up at adjacent vertices
once again.

Answer: 2
3 + 1

3 ( 1
4 )2013 OR 24027+1

3·24026 OR 2
3 + 1

3 ( 1
2 )4026 OR 2

3 + 1
3 ( 1

64 )671 Label the runners A and

B and arbitrarily fix an orientation of the hexagon. Let pt(i) be the probability that A is i (mod 6)
vertices to the right of B at time t, so without loss of generality p0(1) = 1 and p0(2) = · · · = p0(6) = 0.
Then for t > 0, pt(i) = 1

4pt−1(i− 2) + 1
2pt−1(i) + 1

4pt−1(i+ 2).

In particular, pt(2) = pt(4) = pt(6) = 0 for all t, so we may restrict our attention to pt(1), pt(3), pt(5).
Thus pt(1) + pt(3) + pt(5) = 1 for all t ≥ 0, and we deduce pt(i) = 1

4 + 1
4pt−1(i) for i = 1, 3, 5.

Finally, let f(t) = pt(1) + pt(5) denote the probability that A,B are 1 vertex apart at time t, so
f(t) = 1

2 + 1
4f(t− 1) =⇒ f(t)− 2

3 = 1
4 [f(t− 1)− 2

3 ], and we conclude that f(2013) = 2
3 + 1

3 ( 1
4 )2013.

5. [7] Let ABC be a triangle with AB = 13, BC = 14, CA = 15. Company XYZ wants to locate their
base at the point P in the plane minimizing the total distance to their workers, who are located at
vertices A, B, and C. There are 1, 5, and 4 workers at A, B, and C, respectively. Find the minimum
possible total distance Company XYZ’s workers have to travel to get to P .

Answer: 69 We want to minimize 1 · PA + 5 · PB + 4 · PC. By the triangle inequality, (PA +
PB) + 4(PB+PC) ≥ AB+ 4BC = 13 + 56 = 69, with equality precisely when P = [AB]∩ [BC] = B.
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6. [2] Evaluate 1201201−4.

Answer: 2017 The answer is 1+2(−4)2 +(−4)3 +2(−4)5 +(−4)6 = 1−2 ·42 +2 ·45 = 2049−32 =
2017.

7. [3] Express −2013 in base −4.

Answer: 200203 −2013 ≡ 3 (mod 4), so the last digit is 3; now −2013−3
−4 = 504 ≡ 0, so the next

digit (to the left) is 0; then 504−0
−4 = −126 ≡ 2; −126−2

−4 = 32 ≡ 0; 32−0
−4 = −8 ≡ 0; −8−0

−4 = 2.

Thus −201310 = 200203−4.

8. [5] Let b(n) be the number of digits in the base −4 representation of n. Evaluate
∑2013

i=1 b(i).

Answer: 12345 We have the following:

• b(n) = 1 for n between 1 and 3.

• b(n) = 3 for n between 42 − 3 · 4 = 4 and 3 · 42 + 3 = 51. (Since a · 42 − b · 4 + c takes on 3 · 4 · 4
distinct values over 1 ≤ a ≤ 3, 0 ≤ b ≤ 3, 0 ≤ c ≤ 3, with minimum 4 and maximum 51.)

• b(n) = 5 for n between 44 − 3 · 43 − 3 · 4 = 52 and 3 · 44 + 3 · 42 + 3 = 819.

• b(n) = 7 for n between 46 − 3 · 45 − 3 · 43 − 3 · 41 = 820 and 3 · 46 + 3 · 44 + 3 · 42 + 3 > 2013.

Thus
2013∑
i=1

b(i) = 7(2013)− 2(819 + 51 + 3) = 14091− 2(873) = 14091− 1746 = 12345.

9. [7] Let N be the largest positive integer that can be expressed as a 2013-digit base −4 number. What
is the remainder when N is divided by 210?

Answer: 51 The largest is
∑1006

i=0 3 · 42i = 3 161007−1
16−1 = 161007−1

5 .

This is 1 (mod 2), 0 (mod 3), 3 · 1007 ≡ 21 ≡ 1 (mod 5), and 3(21007− 1) ≡ 3(28− 1) ≡ 3(22− 1) ≡ 2
(mod 7), so we need 1 (mod 10) and 9 (mod 21), which is 9 + 2 · 21 = 51 (mod 210).

10. [8] Find the sum of all positive integers n such that there exists an integer b with |b| 6= 4 such that
the base −4 representation of n is the same as the base b representation of n.

Answer: 1026 All 1 digit numbers, 0, 1, 2, 3, are solutions when, say, b = 5. (Of course, d ∈
{0, 1, 2, 3} works for any base b of absolute value greater than d but not equal to 4.)

Consider now positive integers n = (ad . . . a1a0)4 with more than one digit, so d ≥ 1, ad 6= 0, and
0 ≤ ak ≤ 3 for k = 0, 1, . . . , d. Then n has the same representation in base b if and only if |b| > max ak
and

∑d
k=0 ak(−4)k =

∑d
k=0 akb

k, or equivalently,
∑d

k=0 ak(bk − (−4)k) = 0.

First we prove that b ≤ 3. Indeed, if b ≥ 4, then b 6= 4 =⇒ b ≥ 5, so bk − (−4)k is positive for all

k ≥ 1 (and zero for k = 0). But then
∑d

k=0 ak(bk − (−4)k) ≥ ad(bd − (−4)d) must be positive, and
cannot vanish.

Next, we show b ≥ 2. Assume otherwise for the sake of contradiction; b cannot be 0,±1 (these
bases don’t make sense in general) or −4, so we may label two distinct negative integers −r,−s with

r − 1 ≥ s ≥ 2 such that {r, s} = {4,−b}, s > max ak, and
∑d

k=0 ak((−r)k − (−s)k) = 0, which,
combined with the fact that rk − sk ≥ 0 (equality only at k = 0), yields

rd − sd ≤ ad(rd − sd) =

d−1∑
k=0

(−1)d−1−kak(rk − sk)

≤
d−1∑
k=0

(s− 1)(rk − sk) = (s− 1)
rd − 1

r − 1
− (sd − 1).

Hence rd − 1 ≤ (s− 1) rd−1
r−1 < (r − 1) rd−1

r−1 = rd − 1, which is absurd.
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Thus b ≥ 2, and since b ≤ 3 we must either have b = 2 or b = 3. In particular, all ak must be at most
b− 1. We now rewrite our condition as

ad(4d − (−b)d) =

d−1∑
k=0

(−1)d−1−kak(4k − (−b)k).

Since 4k − (−b)k ≥ 0 for k ≥ 0, with equality only at k = 0, we deduce

ad(4d − (−b)d) ≤
∑

k≡d−1 (mod 2)

(b− 1)(4k − (−b)k).

If d− 1 is even (d is odd), this gives

ad(4d + bd) ≤ (b− 1)
4d+1 − 40

42 − 1
− (b− 1)

bd+1 − b0

b2 − 1
,

so 4d < (b− 1) 4d+1

15 =⇒ b > 1 + 15
4 , which is impossible.

Thus d− 1 is odd (d is even), and we get

ad(4d − bd) ≤ (b− 1)
4d+1 − 41

42 − 1
+ (b− 1)

bd+1 − b1

b2 − 1
⇐⇒ bd − 1

4d − 1
≥
ad − 4

15 (b− 1)

ad + b
b+1

.

If b = 2, then ad = 1, so 1
2d+1

= 2d−1
4d−1

≥ 11
25 , which is clearly impossible (d ≥ 2).

If b = 3 and ad = 2, then 9d/2−1
16d/2−1

≤ 8
15 . Since d is even, it’s easy to check this holds only for d/2 = 1,

with equality, so ak = b − 1 if k ≡ d − 1 (mod 2). Thus (ad, . . . , a0) = (2, 2, a0), yielding solutions
(22x)3 (which do work; note that the last digit doesn’t matter).

Otherwise, if b = 3 and ad = 14, then 9d/2−1
16d/2−1

≤ 4
15 . It’s easy to check d/2 ∈ {1, 2}.

If d/2 = 1, we’re solving 16a2 − 4a1 + a0 = 9a2 + 3a1 + a0 ⇐⇒ a2 = a1. We thus obtain the working
solution (11x)3. (Note that 110 = 1

2220 in bases −4, 3.)

If d/2 = 2, we want 256a4−64a3+16a2−4a1+a0 = 81a4+27a3+9a2+3a1+a0, or 175 = 91a3−7a2+7a1,
which simplifies to 25 = 13a3 − a2 + a1. This gives the working solutions (1210x)3, (1221x)3. (Note
that 12100 = 1102 and 12210 = 1102 + 110 in bases −4, 3.)

The list of all nontrivial (≥ 2-digit) solutions (in base −4 and b) is then 11x, 22x, 1210x, 1221x, where
b = 3 and x ∈ {0, 1, 2}. In base 10, they are 12 + x, 2 · 12 + x, 122 + x, 122 + 12 + x, with sum
3(2 · 122 + 4 · 12) + 4(0 + 1 + 2) = 1020.

Finally, we need to include the trivial solutions n = 1, 2, 3, for a total sum of 1026.
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