HMMT November 2013
 Saturday 9 November 2013
 Theme Round

1. [2] Two cars are driving directly towards each other such that one is twice as fast as the other. The distance between their starting points is 4 miles. When the two cars meet, how many miles is the faster car from its starting point?

Answer: | $\frac{8}{3}$ |
| :---: |
| Note that the faster car traveled twice the distance of the slower car, and together, | the two cars traveled the total distance between the starting points, which is 4 miles. Let the distance that the faster car traveled be x. Then, $x+\frac{x}{2}=4 \Longrightarrow x=\frac{8}{3}$. Thus, the faster car traveled $\frac{8}{3}$ miles from the starting point.

2. [4] You are standing at a pole and a snail is moving directly away from the pole at $1 \mathrm{~cm} / \mathrm{s}$. When the snail is 1 meter away, you start "Round 1 ". In Round $n(n \geq 1)$, you move directly toward the snail at $n+1 \mathrm{~cm} / \mathrm{s}$. When you reach the snail, you immediately turn around and move back to the starting pole at $n+1 \mathrm{~cm} / \mathrm{s}$. When you reach the pole, you immediately turn around and Round $n+1$ begins.
At the start of Round 100, how many meters away is the snail?
Answer: 5050 Suppose the snail is x_{n} meters away at the start of round n, so $x_{1}=1$, and the runner takes $\frac{100 x_{n}}{(n+1)-1}=\frac{100 x_{n}}{n}$ seconds to catch up to the snail. But the runner takes the same amount of time to run back to the start, so during round n, the snail moves a distance of $x_{n+1}-x_{n}=\frac{200 x_{n}}{n} \frac{1}{100}=\frac{2 x_{n}}{n}$.
Finally, we have $x_{100}=\frac{101}{99} x_{99}=\frac{101}{99} \frac{100}{98} x_{98}=\cdots=\frac{101!/ 2!}{99!} x_{1}=5050$.
3. [5] Let $A B C$ be a triangle with $A B=5, B C=4$, and $C A=3$. Initially, there is an ant at each vertex. The ants start walking at a rate of 1 unit per second, in the direction $A \rightarrow B \rightarrow C \rightarrow A$ (so the ant starting at A moves along ray $\overrightarrow{A B}$, etc.). For a positive real number t less than 3 , let $A(t)$ be the area of the triangle whose vertices are the positions of the ants after t seconds have elapsed. For what positive real number t less than 3 is $A(t)$ minimized?

Answer: | $\frac{47}{24}$ | We instead maximize the area of the remaining triangles. This area (using $\frac{1}{2} x y \sin \theta$) |
| :---: | :---: | is $\frac{1}{2}(t)(5-t) \frac{3}{5}+\frac{1}{2}(t)(3-t) \frac{4}{5}+\frac{1}{2}(t)(4-t) 1=\frac{1}{10}\left(-12 t^{2}+47 t\right)$, which has a maximum at $t=\frac{47}{24} \in(0,3)$.

4. [7] There are 2 runners on the perimeter of a regular hexagon, initially located at adjacent vertices. Every second, each of the runners independently moves either one vertex to the left, with probability $\frac{1}{2}$, or one vertex to the right, also with probability $\frac{1}{2}$. Find the probability that after a 2013 second run (in which the runners switch vertices 2013 times each), the runners end up at adjacent vertices once again.

Answer: $\quad \frac{2}{3}+\frac{1}{3}\left(\frac{1}{4}\right)^{2013}$ OR $\frac{2^{4027}+1}{3 \cdot 2^{4026}}$ OR $\frac{2}{3}+\frac{1}{3}\left(\frac{1}{2}\right)^{4026}$ OR $\frac{2}{3}+\frac{1}{3}\left(\frac{1}{64}\right)^{671}$ Label the runners A and B and arbitrarily fix an orientation of the hexagon. Let $p_{t}(i)$ be the probability that A is $i(\bmod 6)$ vertices to the right of B at time t, so without loss of generality $p_{0}(1)=1$ and $p_{0}(2)=\cdots=p_{0}(6)=0$. Then for $t>0, p_{t}(i)=\frac{1}{4} p_{t-1}(i-2)+\frac{1}{2} p_{t-1}(i)+\frac{1}{4} p_{t-1}(i+2)$.
In particular, $p_{t}(2)=p_{t}(4)=p_{t}(6)=0$ for all t, so we may restrict our attention to $p_{t}(1), p_{t}(3), p_{t}(5)$. Thus $p_{t}(1)+p_{t}(3)+p_{t}(5)=1$ for all $t \geq 0$, and we deduce $p_{t}(i)=\frac{1}{4}+\frac{1}{4} p_{t-1}(i)$ for $i=1,3,5$.
Finally, let $f(t)=p_{t}(1)+p_{t}(5)$ denote the probability that A, B are 1 vertex apart at time t, so $f(t)=\frac{1}{2}+\frac{1}{4} f(t-1) \Longrightarrow f(t)-\frac{2}{3}=\frac{1}{4}\left[f(t-1)-\frac{2}{3}\right]$, and we conclude that $f(2013)=\frac{2}{3}+\frac{1}{3}\left(\frac{1}{4}\right)^{2013}$.
5. [7] Let $A B C$ be a triangle with $A B=13, B C=14, C A=15$. Company XYZ wants to locate their base at the point P in the plane minimizing the total distance to their workers, who are located at vertices A, B, and C. There are 1,5 , and 4 workers at A, B, and C, respectively. Find the minimum possible total distance Company XYZ's workers have to travel to get to P.
Answer: $\quad 69$ We want to minimize $1 \cdot P A+5 \cdot P B+4 \cdot P C$. By the triangle inequality, $(P A+$ $P B)+4(P B+P C) \geq A B+4 B C=13+56=69$, with equality precisely when $P=[A B] \cap[B C]=B$.
6. [2] Evaluate 1201201-4.

Answer: 2017 The answer is $1+2(-4)^{2}+(-4)^{3}+2(-4)^{5}+(-4)^{6}=1-2 \cdot 4^{2}+2 \cdot 4^{5}=2049-32=$ 2017.
7. [3] Express -2013 in base -4 .

Answer: $200203-2013 \equiv 3(\bmod 4)$, so the last digit is 3 ; now $\frac{-2013-3}{-4}=504 \equiv 0$, so the next digit (to the left) is 0 ; then $\frac{504-0}{-4}=-126 \equiv 2 ; \frac{-126-2}{-4}=32 \equiv 0 ; \frac{32-0}{-4}=-8 \equiv 0 ; \frac{-8-0}{-4}=2$.
Thus $-2013_{10}=200203_{-4}$.
8. [5] Let $b(n)$ be the number of digits in the base -4 representation of n. Evaluate $\sum_{i=1}^{2013} b(i)$.

Answer: 12345 We have the following:

- $b(n)=1$ for n between 1 and 3 .
- $b(n)=3$ for n between $4^{2}-3 \cdot 4=4$ and $3 \cdot 4^{2}+3=51$. (Since $a \cdot 4^{2}-b \cdot 4+c$ takes on $3 \cdot 4 \cdot 4$ distinct values over $1 \leq a \leq 3,0 \leq b \leq 3,0 \leq c \leq 3$, with minimum 4 and maximum 51.)
- $b(n)=5$ for n between $4^{4}-3 \cdot 4^{3}-3 \cdot 4=52$ and $3 \cdot 4^{4}+3 \cdot 4^{2}+3=819$.
- $b(n)=7$ for n between $4^{6}-3 \cdot 4^{5}-3 \cdot 4^{3}-3 \cdot 4^{1}=820$ and $3 \cdot 4^{6}+3 \cdot 4^{4}+3 \cdot 4^{2}+3>2013$.

Thus

$$
\sum_{i=1}^{2013} b(i)=7(2013)-2(819+51+3)=14091-2(873)=14091-1746=12345 .
$$

9. [7] Let N be the largest positive integer that can be expressed as a 2013-digit base -4 number. What is the remainder when N is divided by 210 ?
Answer: 51 The largest is $\sum_{i=0}^{1006} 3 \cdot 4^{2 i}=3 \frac{16^{1007}-1}{16-1}=\frac{16^{1007}-1}{5}$.
This is $1(\bmod 2), 0(\bmod 3), 3 \cdot 1007 \equiv 21 \equiv 1(\bmod 5)$, and $3\left(2^{1007}-1\right) \equiv 3\left(2^{8}-1\right) \equiv 3\left(2^{2}-1\right) \equiv 2$ $(\bmod 7)$, so we need $1(\bmod 10)$ and $9(\bmod 21)$, which is $9+2 \cdot 21=51(\bmod 210)$.
10. [8] Find the sum of all positive integers n such that there exists an integer b with $|b| \neq 4$ such that the base -4 representation of n is the same as the base b representation of n.
Answer: 1026 All 1 digit numbers, $0,1,2,3$, are solutions when, say, $b=5$. (Of course, $d \in$ $\{0,1,2,3\}$ works for any base b of absolute value greater than d but not equal to 4.)
Consider now positive integers $n=\left(a_{d} \ldots a_{1} a_{0}\right)_{4}$ with more than one digit, so $d \geq 1, a_{d} \neq 0$, and $0 \leq a_{k} \leq 3$ for $k=0,1, \ldots, d$. Then n has the same representation in base b if and only if $|b|>\max a_{k}$ and $\sum_{k=0}^{d} a_{k}(-4)^{k}=\sum_{k=0}^{d} a_{k} b^{k}$, or equivalently, $\sum_{k=0}^{d} a_{k}\left(b^{k}-(-4)^{k}\right)=0$.
First we prove that $b \leq 3$. Indeed, if $b \geq 4$, then $b \neq 4 \Longrightarrow b \geq 5$, so $b^{k}-(-4)^{k}$ is positive for all $k \geq 1$ (and zero for $k=0$). But then $\sum_{k=0}^{d} a_{k}\left(b^{k}-(-4)^{k}\right) \geq a_{d}\left(b^{d}-(-4)^{d}\right)$ must be positive, and cannot vanish.
Next, we show $b \geq 2$. Assume otherwise for the sake of contradiction; b cannot be $0, \pm 1$ (these bases don't make sense in general) or -4 , so we may label two distinct negative integers $-r,-s$ with $r-1 \geq s \geq 2$ such that $\{r, s\}=\{4,-b\}, s>\max a_{k}$, and $\sum_{k=0}^{d} a_{k}\left((-r)^{k}-(-s)^{k}\right)=0$, which, combined with the fact that $r^{k}-s^{k} \geq 0$ (equality only at $k=0$), yields

$$
\begin{aligned}
r^{d}-s^{d} \leq a_{d}\left(r^{d}-s^{d}\right) & =\sum_{k=0}^{d-1}(-1)^{d-1-k} a_{k}\left(r^{k}-s^{k}\right) \\
& \leq \sum_{k=0}^{d-1}(s-1)\left(r^{k}-s^{k}\right)=(s-1) \frac{r^{d}-1}{r-1}-\left(s^{d}-1\right)
\end{aligned}
$$

Hence $r^{d}-1 \leq(s-1) \frac{r^{d}-1}{r-1}<(r-1) \frac{r^{d}-1}{r-1}=r^{d}-1$, which is absurd.

Thus $b \geq 2$, and since $b \leq 3$ we must either have $b=2$ or $b=3$. In particular, all a_{k} must be at most $b-1$. We now rewrite our condition as

$$
a_{d}\left(4^{d}-(-b)^{d}\right)=\sum_{k=0}^{d-1}(-1)^{d-1-k} a_{k}\left(4^{k}-(-b)^{k}\right)
$$

Since $4^{k}-(-b)^{k} \geq 0$ for $k \geq 0$, with equality only at $k=0$, we deduce

$$
a_{d}\left(4^{d}-(-b)^{d}\right) \leq \sum_{k \equiv d-1}(b-1)\left(4^{k}-(-b)^{k}\right)
$$

If $d-1$ is even (d is odd), this gives

$$
a_{d}\left(4^{d}+b^{d}\right) \leq(b-1) \frac{4^{d+1}-4^{0}}{4^{2}-1}-(b-1) \frac{b^{d+1}-b^{0}}{b^{2}-1}
$$

so $4^{d}<(b-1) \frac{4^{d+1}}{15} \Longrightarrow b>1+\frac{15}{4}$, which is impossible.
Thus $d-1$ is odd (d is even), and we get

$$
a_{d}\left(4^{d}-b^{d}\right) \leq(b-1) \frac{4^{d+1}-4^{1}}{4^{2}-1}+(b-1) \frac{b^{d+1}-b^{1}}{b^{2}-1} \Longleftrightarrow \frac{b^{d}-1}{4^{d}-1} \geq \frac{a_{d}-\frac{4}{15}(b-1)}{a_{d}+\frac{b}{b+1}}
$$

If $b=2$, then $a_{d}=1$, so $\frac{1}{2^{d}+1}=\frac{2^{d}-1}{4^{d}-1} \geq \frac{11}{25}$, which is clearly impossible $(d \geq 2)$.
If $b=3$ and $a_{d}=2$, then $\frac{9^{d / 2}-1}{16^{d / 2}-1} \leq \frac{8}{15}$. Since d is even, it's easy to check this holds only for $d / 2=1$, with equality, so $a_{k}=b-1$ if $k \equiv d-1(\bmod 2)$. Thus $\left(a_{d}, \ldots, a_{0}\right)=\left(2,2, a_{0}\right)$, yielding solutions $(22 x)_{3}$ (which do work; note that the last digit doesn't matter).
Otherwise, if $b=3$ and $a_{d}=14$, then $\frac{9^{d / 2}-1}{16^{d / 2}-1} \leq \frac{4}{15}$. It's easy to check $d / 2 \in\{1,2\}$.
If $d / 2=1$, we're solving $16 a_{2}-4 a_{1}+a_{0}=9 a_{2}+3 a_{1}+a_{0} \Longleftrightarrow a_{2}=a_{1}$. We thus obtain the working solution $(11 x)_{3}$. (Note that $110=\frac{1}{2} 220$ in bases $-4,3$.)
If $d / 2=2$, we want $256 a_{4}-64 a_{3}+16 a_{2}-4 a_{1}+a_{0}=81 a_{4}+27 a_{3}+9 a_{2}+3 a_{1}+a_{0}$, or $175=91 a_{3}-7 a_{2}+7 a_{1}$, which simplifies to $25=13 a_{3}-a_{2}+a_{1}$. This gives the working solutions $(1210 x)_{3},(1221 x)_{3}$. (Note that $12100=110^{2}$ and $12210=110^{2}+110$ in bases $-4,3$.)
The list of all nontrivial (≥ 2-digit) solutions (in base -4 and b) is then $11 x, 22 x, 1210 x, 1221 x$, where $b=3$ and $x \in\{0,1,2\}$. In base 10 , they are $12+x, 2 \cdot 12+x, 12^{2}+x, 12^{2}+12+x$, with sum $3\left(2 \cdot 12^{2}+4 \cdot 12\right)+4(0+1+2)=1020$.
Finally, we need to include the trivial solutions $n=1,2,3$, for a total sum of 1026 .

