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Combinatorics

1. There are 100 students who want to sign up for the class Introduction to Acting. There are three
class sections for Introduction to Acting, each of which will fit exactly 20 students. The 100 students,
including Alex and Zhu, are put in a lottery, and 60 of them are randomly selected to fill up the classes.
What is the probability that Alex and Zhu end up getting into the same section for the class?

Answer: 19/165 There is a 60
100 = 3

5 chance that Alex is in the class. If Alex is in the class, the

probability that Zhu is in his section is 19
99 . So the answer is 3

5 · 19
99 = 19

165 .

2. There are 10 people who want to choose a committee of 5 people among them. They do this by first
electing a set of 1, 2, 3, or 4 committee leaders, who then choose among the remaining people to
complete the 5-person committee. In how many ways can the committee be formed, assuming that
people are distinguishable? (Two committees that have the same members but different sets of leaders
are considered to be distinct.)

Answer: 7560 There are
(

10
5

)

ways to choose the 5-person committee. After choosing the

committee, there are 25 − 2 = 30 ways to choose the leaders. So the answer is 30 ·
(

10
5

)

= 7560.

3. Bob writes a random string of 5 letters, where each letter is either A, B, C, or D. The letter in each
position is independently chosen, and each of the letters A,B,C,D is chosen with equal probability.
Given that there are at least two A’s in the string, find the probability that there are at least three
A’s in the string.

Answer: 53
188 There are

(

5
2

)

33 = 270 strings with 2 A’s. There are
(

5
3

)

32 = 90 strings with 3 A’s.

There are
(

5
4

)

31 = 15 strings with 4 A’s. There is
(

5
5

)

30 = 1 string with 5 A’s.

The desired probability is 90+15+1
270+90+15+1 = 53

188 .

4. Find the number of triples of sets (A,B,C) such that:

(a) A,B,C ⊆ {1, 2, 3, . . . , 8}.

(b) |A ∩ B| = |B ∩ C| = |C ∩ A| = 2.

(c) |A| = |B| = |C| = 4.

Here, |S| denotes the number of elements in the set S.

Answer: 45360 We consider the sets drawn in a Venn diagram.
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Note that each element that is in at least one of the subsets lies in these seven possible spaces. We
split by casework, with the cases based on N = |R7| = |A ∩ B ∩ C|.

Case 1: N = 2

Because we are given that |R4|+ N = |R5|+ N = |R6|+ N = 2, we must have |R4| = |R5| = |R6| = 0.
But we also know that |R1|+ |R5|+ |R6|+ N = 4, so |R1| = 2. Similarly, |R2| = |R3| = 2. Since these
regions are distinguishable, we multiply through and obtain

(

8
2

)(

6
2

)(

4
2

)(

2
2

)

= 2520 ways.

Case 2: N = 1

In this case, we can immediately deduce |R4| = |R5| = |R6| = 1. From this, it follows that |R1| =
4 − 1 − 1 − 1 = 1, and similarly, |R2| = |R3| = 1. All seven regions each contain one integer, so there
are a total of (8)(7) . . . (2) = 40320 ways.

Case 3: N = 0

Because |R4| + N = |R5| + N = |R6| + N = 2, we must have |R4| = |R5| = |R6| = 2. Since
|R1|+ |R5|+ |R6|+ N = 4, we immediately see that |R1| = 0. Similarly, |R2| = |R3| = 0. The number
of ways to fill R4, R5, R6 is

(

8
2

)(

6
2

)(

4
2

)

= 2520.

This clearly exhausts all the possibilities, so adding gives us 40320 + 2520 + 2520 = 45360 ways.

5. Eli, Joy, Paul, and Sam want to form a company; the company will have 16 shares to split among the
4 people. The following constraints are imposed:

• Every person must get a positive integer number of shares, and all 16 shares must be given out.

• No one person can have more shares than the other three people combined.

Assuming that shares are indistinguishable, but people are distinguishable, in how many ways can the
shares be given out?

Answer: 315 We are finding the number of integer solutions to a + b + c + d = 16 with 1 ≤
a, b, c, d ≤ 8. We count the number of solutions to a+b+c+d = 16 over positive integers, and subtract
the number of solutions in which at least one variable is larger than 8. If at least one variable is larger
than 8, exactly one of the variables is larger than 8. We have 4 choices for this variable. The number
of solutions to a + b + c + d = 16 over positive integers, where a > 8, is just the number of solutions
to a′ + b + c + d = 8 over positive integers, since we can substitute a′ = a − 8. Thus, by the stars and
bars formula (the number of positive integer solutions to x1 + · · · + xm = n is

(

n−1
m−1

)

), the answer is
(

16−1
4−1

)

−
(

4
1

)(

(16−8)−1
4−1

)

= 35 · 13 − 4 · 35 = 315.

6. We have a calculator with two buttons that displays an integer x. Pressing the first button replaces
x by ⌊x

2 ⌋, and pressing the second button replaces x by 4x + 1. Initially, the calculator displays 0.
How many integers less than or equal to 2014 can be achieved through a sequence of arbitrary button
presses? (It is permitted for the number displayed to exceed 2014 during the sequence. Here, ⌊y⌋
denotes the greatest integer less than or equal to the real number y.)

Answer: 233 We consider the integers from this process written in binary. The first operation
truncates the rightmost digit, while the second operation appends 01 to the right.

We cannot have a number with a substring 11. For simplicity, call a string valid if it has no consecutive
1′s. Note that any number generated by this process is valid, as truncating the rightmost digit and
appending 01 to the right of the digits clearly preserve validity.

Since we can effectively append a zero by applying the second operation and then the first operation,
we see that we can achieve all valid strings.



Note that 2014 has eleven digits when written in binary, and any valid binary string with eleven digits
is at most 10111111111 = 1535. Therefore, our problem reduces to finding the number of eleven-digit
valid strings. Let Fn denote the number of valid strings of length n. For any valid string of length n, we
can create a valid string of length n+1 by appending a 0, or we can create a valid string of length n+2
by appending 01. This process is clearly reversible, so our recursion is given by Fn = Fn−1+Fn−2, with
F1 = 2, F2 = 3. This yields a sequence of Fibonacci numbers starting from 2, and some computation
shows that our answer is F11 = 233.

7. Six distinguishable players are participating in a tennis tournament. Each player plays one match of
tennis against every other player. There are no ties in this tournament—each tennis match results
in a win for one player and a loss for the other. Suppose that whenever A and B are players in the
tournament such that A wins strictly more matches than B over the course of the tournament, it is also
true that A wins the match against B in the tournament. In how many ways could the tournament
have gone?

Answer: 2048 We first group the players by wins, so let G1 be the set of all players with the most
wins, G2 be the set of all players with the second most wins, ..., Gn be the set of all players with the
least wins. By the condition in the problem, everyone in group Gi must beat everyone in group Gj for
all i < j. Now, consider the mini-tournament consisting of the matches among players inside a single
group Gi. Each must have the same number of wins, say xi. But the total number of games is

(

|Gi|
2

)

and each game corresponds to exactly one win, so we must have
(

|Gi|
2

)

= |Gi|xi =⇒ |Gi| = 2xi + 1.
Therefore, the number of players in each Gi is odd.

We now have
∑

|Gi| = 6 and all |Gi| are odd, so we can now do casework on the possibilities.

Case 1: Gi’s have sizes 5 and 1. In this case, there are 2 ways to permute the groups (i.e. either
|G1| = 5, |G2| = 1 or |G1| = 1, |G2| = 5). There are 6 ways to distribute the players into the two
groups. There are 24 possible mini-tournaments in the group of size 5; to prove this, we label the
players p1, . . . , p5 and note that each player has 2 wins. Without loss of generality, let p1 beat p2

and p3, and also without loss of generality let p2 beat p3. It’s easy to verify that there are 2 possible
mini-tournaments, depending on whether p4 beats p5 or p5 beats p4. Since there are

(

4
2

)

· 2 = 12 ways
to pick the two players p1 defeats and choose which one beats the other, there are indeed 12 · 2 = 24
tournaments. Then the total number of possible tournaments in this case is 2 · 6 · 24 = 288.

Case 2: The sizes are 3, 3. In this case, there are
(

6
3

)

= 20 ways to distribute the players into the
groups, and 2 possible mini-tournaments in either group, so the total here is 20 · 2 · 2 = 80.

Case 3: The sizes are 3, 1, 1, 1. In this case, there are 4 ways to permute the groups,
(

6
3

)

· 6 = 120
ways to distribute the players into groups, and 2 possible mini-tournaments in the group of size 3, for
a total of 4 · 120 · 2 = 960.

Case 4: The sizes are 1, 1, 1, 1, 1, 1. There are 720 ways to distribute the players into groups.

The final answer is 288 + 80 + 960 + 720 = 2048.

8. The integers 1, 2, . . . , 64 are written in the squares of a 8×8 chess board, such that for each 1 ≤ i < 64,
the numbers i and i + 1 are in squares that share an edge. What is the largest possible sum that can
appear along one of the diagonals?

Answer: 432 Our answer is 26 + 52 + 54 + 56 + 58 + 60 + 62 + 64.
One possible configuration:

WLOG, we seek to maximize the sum of the numbers on the main diagonal (top left to bottom right).
If we color the squares in a checker-board pattern and use the fact that a and a + 1 lie on different
colored squares, we notice that all numbers appearing on the main diagonal must be of the same parity.

Consider the smallest value m on the main diagonal. All numbers from 1 to m− 1 must lie on one side
of the diagonal since the main diagonal disconnects the board into two regions, and by assumption, all



26 25 24 23 18 17 8 7
27 52 53 22 19 16 9 6
28 51 54 21 20 15 10 5
29 50 55 56 57 14 11 4
30 49 44 43 58 13 12 3
31 48 45 42 59 60 61 2
32 47 46 41 40 39 62 1
33 34 35 36 37 38 63 64

numbers less than m cannot lie on the main diagonal. Therefore, m ≤ 29 (one more than the seventh
triangular number) But if m = 29, then the sum of the numbers on the main diagonal is at most
29 + 51 + 53 + 55 + 57 + 59 + 61 + 63 = 428, as these numbers must be odd. Similarly, m = 27 is also
not optimal.

This leaves m = 28 as a possibility. But if this were the case, the only way it beats our answer is if we
have 28+52+54+ ...+64, which would require 52, 54, ..., 64 to appear sequentially along the diagonal,
forcing 28 to be in one of the corners.

Now label the squares (row, column) with (1, 1) being the top left and (8, 8) being the bottom right.
Assume WLOG that 28 occupies (1, 1). Since 62 and 64 are in (7, 7) and (8, 8), respectively, we must
have 63 in (7, 8) or (8, 7), and WLOG, assume it’s in (8, 7). Since 61 is next to 60, it is not difficult
to see that (7, 8) must be occupied by 1 (all numbers a between 2 and 60 must have a − 1 and a + 1
as neighbors) . Since 1 is above the main diagonal, all numbers from 1 to 27 must also be above the
main diagonal. Since there are 28 squares above the main diagonal, there is exactly one number above
the main diagonal greater than 28.

Notice that 61 must occupy (7, 6) or (6, 7). If it occupies (7, 6), then we are stuck at (8, 6), since it
must contain a number between 2 and 59, which is impossible. Therefore, 61 must occupy (6, 7), and
no more numbers greater than 28 can be above the main diagonal. This forces 59, 57, 55, and 53 to
occupy (6, 5), (5, 4), (4, 3), (3, 2), respectively. But we see that 27 occupies (1, 2) and 29 occupies (2, 1),
leaving nowhere for 51.

This is a contradiction, so our answer is therefore optimal.

Alternate solution: Another method of proving that m ≤ 26 is to note that each side of the diagonal
has 28 squares, 16 of which are one color and 12 of which are the other color. As the path has to
alternate colors, one can make at most 13 + 12 = 25 steps before moving on the diagonal.

9. There is a heads up coin on every integer of the number line. Lucky is initially standing on the zero
point of the number line facing in the positive direction. Lucky performs the following procedure: he
looks at the coin (or lack thereof) underneath him, and then,

• If the coin is heads up, Lucky flips it to tails up, turns around, and steps forward a distance of
one unit.

• If the coin is tails up, Lucky picks up the coin and steps forward a distance of one unit facing the
same direction.

• If there is no coin, Lucky places a coin heads up underneath him and steps forward a distance of
one unit facing the same direction.

He repeats this procedure until there are 20 coins anywhere that are tails up. How many times has
Lucky performed the procedure when the process stops?



Answer: 6098 We keep track of the following quantities: Let N be the sum of 2k, where k ranges
over all nonnegative integers such that position −1 − k on the number line contains a tails-up coin.
Let M be the sum of 2k, where k ranges over all nonnegative integers such that position k contains a
tails-up coin.

We also make the following definitions: A ”right event” is the event that Lucky crosses from the
negative integers on the number line to the non-negative integers. A ”left event” is the event that
Lucky crosses from the non-negative integers on the number line to the negative integers.

We now make the following claims:

(a) Every time a right event or left event occurs, every point on the number line contains a coin.

(b) Suppose that n is a positive integer. When the nth left event occurs, the value of M is equal to
n. When the nth right event occurs, the value of N is equal to n.

(c) For a nonzero integer n, denote by ν2(n) the largest integer k such that 2k divides n. The number
of steps that elapse between the (n−1)st right event and the nth left event is equal to 2ν2(n)+1.
The number of steps that elapse between the nth left event and the nth right event is also equal
to 2ν2(n) + 1. (If n − 1 = 0, then the “(n − 1)st right event” refers to the beginning of the
simulation.)

(d) The man stops as soon as the 1023rd right event occurs. (Note that 1023 = 210 − 1.)

In other words, Lucky is keeping track of two numbers M and N , which are obtained by interpreting
the coins on the number line as binary strings, and alternately incrementing each of them by one. We
will prove claim 2; the other claims follow from very similar reasoning and their proofs will be omitted.

Clearly, left and right events alternate. That is, a left event occurs, then a right event, then a left
event, and so on. So it’s enough to prove that, between each right event and the following left event,
the value of M is incremented by 1, and that between each left event and the following right event, the
value of N is incremented by 1. We will show the first statement; the second follows from symmetry.

Suppose that a right event has just occurred. Then, by claim 1, every space on the number line
cotnains a coin. So, there is some nonnegative integer ℓ for which positions 0, . . . , ℓ− 1 on the number
line contain a tails up coin, and position ℓ contains a heads up coin. Since Lucky is standing at position
0 facing rightward, the following sequence of steps will occur:

(a) Lucky will take ℓ steps to the right, eventually reaching position ℓ. During this process, he will
pick up the coins at positions 0, . . . , ℓ − 1.

(b) Then, Lucky turn the coin at position ℓ to a tails up coin and turn around.

(c) Finally, Lucky will take ℓ + 1 steps to the left, eventually reaching position −1 (at which point a
left event occurs). During this process, he will place a heads up coin at positions 0, . . . , ℓ − 1.

During this sequence, the tails up coins at positions 0, . . . , ℓ− 1 have been changed to heads up coins,
and the heads up coin at position ℓ has been changed to a tails up coin. So the value of M has been
incremented by

2ℓ −

ℓ−1
∑

i=0

2i = 1

as desired.

Now, it remains to compute the answer to the question. By claims 3 and 4, the total number of steps
taken by the simulation is

2

1023
∑

n=1

(2ν2(n) + 1).

This can be rewritten as

4

1023
∑

n=1

ν2(n) + 2 · 1023 = 4ν2(1023!) + 2046.



We can compute ν2(1023!) = 1013 using Legendre’s formula for the highest power of 2 dividing a
factorial. This results in the final answer 6098.

10. An up-right path from (a, b) ∈ R
2 to (c, d) ∈ R

2 is a finite sequence (x1, y1), . . . , (xk, yk) of points
in R

2 such that (a, b) = (x1, y1), (c, d) = (xk, yk), and for each 1 ≤ i < k we have that either
(xi+1, yi+1) = (xi + 1, yi) or (xi+1, yi+1) = (xi, yi + 1). Two up-right paths are said to intersect if they
share any point.

Find the number of pairs (A,B) where A is an up-right path from (0, 0) to (4, 4), B is an up-right path
from (2, 0) to (6, 4), and A and B do not intersect.

Answer: 1750 The number of up-right paths from (0, 0) to (4, 4) is
(

8
4

)

because any such up-
right path is identical to a sequence of 4 U’s and 4 R’s, where U corresponds to a step upwards and
R corresponds to a step rightwards. Therefore, the total number of pairs of (possibly intersecting)

up-right paths from (0, 0) to (4, 4) and (2, 0) to (6, 4) is
(

8
4

)2
.

We will now count the number of intersecting pairs of up-right paths and subtract it to get the answer.
Consider an up-right path A from (0, 0) to (4, 4) and an up-right path B from (2, 0) to (6, 4). If they
intersect, take the point (x, y) where they first meet each other, and switch the parts of the paths after
(x, y) to make an up-right path A′ from (0, 0) to (6, 4) and an up-right path B′ from (2, 0) to (4, 4).

Conversely, given an up-right path A′ from (0, 0) to (6, 4) and an up-right path B′ from (2, 0) to (4, 4),
they must intersect somewhere, so we can again take their first intersection point and switch the ends
to get the original up-right path A from (0, 0) to (4, 4) and up-right path B from (2, 0) to (6, 4), where
A and B intersect.

Consequently, the number of intersecting pairs of up-right paths is exactly equal to the number of pairs
of up-right paths from (0, 0) to (6, 4) and (2, 0) to (4, 4), which is

(

10
4

)(

6
4

)

. The number of pairs that

do not intersect is therefore
(

8
4

)2
−

(

10
4

)(

6
4

)

= 4900 − 3150 = 1750.


