Organizat	on Team 7	Геат ID#
1.	[5] If five fair coins are flipped simultaneously, what is the probability that at heads?	least three of them show
2.	[5] How many perfect squares divide 10^{10} ?	
3.	[5] Evaluate $\frac{2016!^2}{2015!2017!}$. Here $n!$ denotes $1 \times 2 \times \cdots \times n$.	
	HMMT November 2016, November 12, 2016 — GUTS ROUND	
Organizat	on Team 7	Геат ID#
4.	[6] A square can be divided into four congruent figures as shown:	

For how many n with $1 \le n \le 100$ can a unit square be divided into n congruent figures?

- 5. [6] If x + 2y 3z = 7 and 2x y + 2z = 6, determine 8x + y.
- 6. [6] Let ABCD be a rectangle, and let E and F be points on segment AB such that AE = EF = FB. If CE intersects the line AD at P, and PF intersects BC at Q, determine the ratio of BQ to CQ.

Ì	HMMT November 2016, November 12, 2016 —	GUTS ROUND
Organization	Team	Team ID#
7. [7] What is the	minimum value of the product	
	$\prod_{i=1}^{6} \frac{a_i - a_{i+1}}{a_{i+2} - a_{i+3}}$	
given that (a_1, a_2, a_3)	$(1, 2, 3, a_4, a_5, a_6)$ is a permutation of $(1, 2, 3, a_6)$	$(4,5,6)$? (note $a_7 = a_1, a_8 = a_2 \cdots$)
8. [7] Danielle pick $gcd(n, 2015) = 1$	s a positive integer $1 \le n \le 2016$ uniformly?	y at random. What is the probability that
9. [7] How many 3-	element subsets of the set $\{1, 2, 3, \dots, 19\}$	have sum of elements divisible by 4?
	HMMT November 2016, November 12, 2016 —	
Organization	Team	Team ID#
	aying basketball. He makes 10% of his sho he does not get the ball back he stops play s a shot?	,
11. [8] How many so $i+1$ (or both) i	absets S of the set $\{1, 2, \dots, 10\}$ satisfy the s in S ?	e property that, for all $i \in [1, 9]$, either i or
12. [8] A positive in	teger \overline{ABC} , where A, B, C are digits, satisf	efies
	$\overline{ABC} = B^C - A$	

	HMMT November 2016, November 12,	2016 — GUTS ROUND
Organizat	tion Team	Team ID#
13.	[9] How many functions $f: \{0,1\}^3 \to \{0,1\}$ satisfy and (b_1,b_2,b_3) such that $a_i \geq b_i$ for all $i, f(a_1,a_2,a_3)$	
14.	[9] The very hungry caterpillar lives on the number point with coordinate i . The caterpillar moves back he eats the food, increasing his weight by one pour speed of 2^{-w} units per day, where w is his weight. zero pounds, and initially moves in the positive x pounds?	and forth; whenever he reaches a point with food, and, and turns around. The caterpillar moves at a If the caterpillar starts off at the origin, weighing
15.	[9] Let $ABCD$ be an isosceles trapezoid with paral the area of the region containing all points inside A trapezoid lie on the segments formed by AB,BC,C	BCD whose projections onto the four sides of the
	HMMT November 2016, November 12,	2016 — GUTS ROUND
Organizat	tion Team	Team ID#
16.	[10] Create a cube C_1 with edge length 1. Take the octahedron O_1 . Take the centers of the octahedron Continue this process infinitely. Find the sum of all	s faces and connect them to form a new cube C_2 .
17.	[10] Let $p(x) = x^2 - x + 1$. Let α be a root of $p(p(p(x)))$	p(p(x))). Find the value of
	$(p(\alpha)-1)p(\alpha)p(\alpha)$	p(lpha))p(p(p(lpha))
18.	[10] An 8 by 8 grid of numbers obeys the following	pattern:
	1) The first row and first column consist of all 1s.	
	2) The entry in the i th row and j th column equals sub-grid with row less than i and column less than	

What is the number in the 8th row and 8th column?

	HMMT No	ovember 2016, November 12, 2016 —	GUTS ROUND
Organizat	tion	Team	Team ID#
19.			factorizations only contain powers of the thus contained in S). Compute $\sum_{s \in S} \frac{1}{s}$.
20.	[11] Let $\mathcal V$ be the volume	enclosed by the graph	
		$x^{2016} + y^{2016} + z^2 = 1$	2016
	Find $\mathcal V$ rounded to the ne	arest multiple of ten.	
21.		at there are N ways to select socks	so proudly display one sock of each of the s from his collection for display. Given this
 Organizat		ovember 2016, November 12, 2016 — Team	
	tion	Team	Team ID#
	tion	Team $_$ Team $_$ $\mathbb{Z} \to \mathbb{Z}$ take only integer inputs an	Team ID# d have integer outputs. For any integers a
	tion for the function $f: \mathbb{Z}$ and g , f satisfies	Team Team $ \mathbb{Z} \to \mathbb{Z} \text{ take only integer inputs an} $ $f(x) + f(y) = f(x+1) + f(x+$	Team ID# d have integer outputs. For any integers a
22.	tion for the function $f: \mathbb{Z}$ and g , f satisfies If $f(2016) = 6102$ and $f(6)$	Team Team $ \mathbb{Z} \to \mathbb{Z} \text{ take only integer inputs an} $ $ f(x) + f(y) = f(x+1) + 6102) = 2016, \text{ what is } f(1)? $	Team ID# dd have integer outputs. For any integers x $f(y-1)$
22.	tion for the function $f: \mathbb{Z}$ and g , f satisfies If $f(2016) = 6102$ and $f(6)$	Team Team $f(x) + f(y) = f(x+1) + f(x) = 2016$, what is $f(1)$? chosen divisor of 2016. Find the	Team ID# dd have integer outputs. For any integers $f(y-1)$
22.	tion for the function $f: \mathbb{Z}$ and g , f satisfies If $f(2016) = 6102$ and $f(6)$	Team Team $ \mathbb{Z} \to \mathbb{Z} \text{ take only integer inputs an} $ $ f(x) + f(y) = f(x+1) + 6102) = 2016, \text{ what is } f(1)? $	Team ID# dd have integer outputs. For any integers $f(y-1)$

Organizati	HMMT November 2016, November 12, 2016 — GUTS ROUND Organization Team ID#				
	[13] Chris and Paul each rent a different room of a hotel from manager mistakes them for one person and gives "Chris Paul" a concatenated. For example, if Chris had 15 and Paul had 9, "C rooms in the hotel, what is the probability that "Chris Paul" had	a room with Chris's and Paul's room Chris Paul" has 159. If there are 360			
0.0	[40] D: 1,1 1 C , 1 , 1 , 1	V 1.17 ((1.0 0001) 1.11			

- 26. [13] Find the number of ways to choose two nonempty subsets X and Y of $\{1, 2, ..., 2001\}$, such that |Y| = 1001 and the smallest element of Y is equal to the largest element of X.
- 27. [13] Let r_1 , r_2 , r_3 , r_4 be the four roots of the polynomial $x^4 4x^3 + 8x^2 7x + 3$. Find the value of

$$\frac{r_1^2}{r_2^2 + r_3^2 + r_4^2} + \frac{r_2^2}{r_1^2 + r_3^2 + r_4^2} + \frac{r_3^2}{r_1^2 + r_2^2 + r_4^2} + \frac{r_4^2}{r_1^2 + r_2^2 + r_3^2}$$

.....

HMMT	November	2016.	November	12.	2016 —	GUTS	ROUND

Organization	Team	Team ID≠	4
Organization _		1ean 1D ₇	<i>t</i>

- 28. [15] The numbers 1-10 are written in a circle randomly. Find the expected number of numbers which are at least 2 larger than an adjacent number.
- 29. [15] We want to design a new chess piece, the American, with the property that (i) the American can never attack itself, and (ii) if an American A_1 attacks another American A_2 , then A_2 also attacks A_1 . Let m be the number of squares that an American attacks when placed in the top left corner of an 8 by 8 chessboard. Let n be the maximal number of Americans that can be placed on the 8 by 8 chessboard such that no Americans attack each other, if one American must be in the top left corner. Find the largest possible value of mn.
- 30. [15] On the blackboard, Amy writes 2017 in base-a to get 133201_a . Betsy notices she can erase a digit from Amy's number and change the base to base-b such that the value of the number remains the same. Catherine then notices she can erase a digit from Betsy's number and change the base to base-c such that the value still remains the same. Compute, in decimal, a + b + c.

	HMMT November 2016, November 12, 2016	— GUTS ROUND	
Organizat	ion Team	Team ID#	
31.	[17] Define a number to be an anti-palindrome if, when writing 2 for any $0 \le i \le n$. Find the number of anti-palindrome digits in base 3 are equal.		
32.	[17] Let $C_{k,n}$ denote the number of paths on the Carte $(0,0)$ to (k,n) , given the following rules: 1) You can only 2) You can only change direction at lattice points 3) Each most 99 units long.	travel directly upward or directly rightward	
	Find $\sum_{j=0}^{\infty} C_{100j+19,1}$.7	
33.	[17] Camille the snail lives on the surface of a regular of the face with vertices P_1, P_2, P_3, P_4, P_5 . This face has the point on the dodecahedron farthest away from P_1 . distance at least L . What is L^2 ?	s a perimeter of 5. Camille wants to get to	
	HMMT November 2016, November 12, 2016		
Organizat	ion Team	Team ID#	
34.	[20] Find the sum of the ages of everyone who wrote a contest. If your answer is X and the actual value is Y , y		
35.	35. [20] Find the total number of occurrences of the digits $0, 1, \dots, 9$ in the entire guts round. If you answer is X and the actual value is Y , your score will be $\max(0, 20 - \frac{ X-Y }{2})$		
36.	[20] Find the number of positive integers less than 10 sum of their proper divisors. If your answer is X and $\max(0,20-80 1-\frac{X}{Y})$ rounded to the nearest integer.		