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1. Compute the sum of all positive integers n for which the expression

n+ 7√
n− 1

is an integer.

Proposed by: Ryan Kim

Answer: 89

Solution: We know
√
n− 1 must be a positive integer, because the numerator is a positive integer,

and the square root of an integer cannot be a non-integer rational. From this,

n+ 7√
n− 1

=
√
n− 1 +

8√
n− 1

is a positive integer, so we
√
n− 1 must be a positive integer that divides 8. There are 4 such positive

integers: 1, 2, 4, 8, which give n = 2, 5, 17, 65, so the answer is 89.

2. Compute the number of ordered pairs of integers (a, b), with 2 ≤ a, b ≤ 2021, that satisfy the equation

alogb(a−4) = bloga(ba−3).

Proposed by: Vincent Bian

Answer: 43

Solution: Taking loga of both sides and simplifying tives

−4 logb a = (loga b)
2 − 3 loga b.

Plugging in x = loga b and using logb a = 1
loga b

gives

x3 − 3x2 + 4 = 0.

We can factor the polynomial as (x − 2)(x − 2)(x + 1), meaning b = a2 or b = a−1. The second
case is impossible since both a and b are positive integers. So, we need only count the number of
1 < a, b ≤ 2021 for which b = a2, which is b

√
2021c − 1 = 43.

3. Among all polynomials P (x) with integer coefficients for which P (−10) = 145 and P (9) = 164, compute
the smallest possible value of |P (0)|.
Proposed by: Carl Schildkraut

Answer: 25

Solution: Since a− b|P (a)− P (b) for any integer polynomial P and integers a and b, we require that
10|P (0)− P (−10) and 9|P (0)− P (9). So, we are looking for an integer a near 0 for which

a ≡ 5 mod 10, a ≡ 2 mod 9.

The smallest such positive integer is 65, and the smallest such negative integer is −25. This is achiev-
able, for example, if P (x) = 2x2 + 3x− 25, so our answer is 25.



4. Suppose that P (x, y, z) is a homogeneous degree 4 polynomial in three variables such that P (a, b, c) =
P (b, c, a) and P (a, a, b) = 0 for all real a, b, and c. If P (1, 2, 3) = 1, compute P (2, 4, 8).

Note: P (x, y, z) is a homogeneous degree 4 polynomial if it satisfies P (ka, kb, kc) = k4P (a, b, c) for all
real k, a, b, c.

Proposed by: Milan Haiman

Answer: 56

Solution: Since P (a, a, b) = 0, (x−y) is a factor of P , which means (y−z) and (z−x) are also factors
by the symmetry of the polynomial. So,

P (x, y, z)

(x− y)(y − z)(z − x)

is a symmetric homogeneous degree 1 polynomial, so it must be k(x+ y + z) for some real k. So, the
answer is

P (2, 4, 8)

P (1, 2, 3)
=

(2 + 4 + 8)(2− 4)(4− 8)(8− 2)

(1 + 2 + 3)(1− 2)(2− 3)(3− 1)
= 56.

5. Let n be the product of the first 10 primes, and let

S =
∑
xy|n

ϕ(x) · y,

where ϕ(x) denotes the number of positive integers less than or equal to x that are relatively prime to
x, and the sum is taken over ordered pairs (x, y) of positive integers for which xy divides n. Compute
S
n .

Proposed by: Hahn Lheem

Answer: 1024

Solution 1: We see that, for any positive integer n,

S =
∑
xy|n

ϕ(x) · y =
∑
x|n

ϕ(x)

∑
y|nx

y

 =
∑
x|n

ϕ(x)σ
(n
x

)
.

Since ϕ and σ are both weakly multiplicative (if x and y are relatively prime, then ϕ(xy) = ϕ(x)ϕ(y)
and σ(xy) = σ(x)σ(y)), we may break this up as∏

p

(ϕ(p) + σ(p)),

where the product is over all primes that divide n. This is simply 210n, giving an answer of 210 = 1024.

Solution 2: We recall that ∑
d|n

ϕ(d) = n.

So, we may break up the sum as

S =
∑
xy|n

ϕ(x) · y =
∑
y|n

y
∑
x|ny

ϕ(x) =
∑
y|n

y

(
n

y

)
,

so S is simply n times the number of divisors of n. This number is 210 = 1024.



Solution 3: When constructing a term in the sum, for each prime p dividing n, we can choose to
include p in x, or in y, or in neither. This gives a factor of p − 1, p, or 1, respectively. Thus we can
factor the sum as

S =
∏
p|n

(p− 1 + p+ 1) =
∏
p|n

2p = 210n.

So the answer is 1024.

6. Suppose that m and n are positive integers with m < n such that the interval [m,n) contains more
multiples of 2021 than multiples of 2000. Compute the maximum possible value of n−m.

Proposed by: Carl Schildkraut

Answer: 191999

Solution: Let a = 2021 and b = 2000. It is clear that we may increase y − x unless both x − 1 and
y + 1 are multiples of b, so we may assume that our interval is of length b(k + 1)− 1, where there are
k multiples of b in our interval. There are at least k + 1 multiples of a, and so it is of length at least
ak + 1. We thus have that

ak + 1 ≤ b(k + 1)− 1 =⇒ (a− b)k ≤ b− 2 =⇒ k ≤
⌊
b− 2

a− b

⌋
.

So, the highest possible value of k is 95, and this is achievable by the Chinese remainder theorem,
giving us an answer of 191999.

7. Suppose that x, y, and z are complex numbers of equal magnitude that satisfy

x+ y + z = −
√

3

2
− i
√

5

and
xyz =

√
3 + i

√
5.

If x = x1 + ix2, y = y1 + iy2, and z = z1 + iz2 for real x1, x2, y1, y2, z1, and z2, then

(x1x2 + y1y2 + z1z2)
2

can be written as a
b for relatively prime positive integers a and b. Compute 100a+ b.

Proposed by: Akash Das

Answer: 1516

Solution: From the conditions, it is clear that a, b, c all have magnitude
√

2. Conjugating the first

equation gives 2(ab+bc+caabc ) = −
√
3
2 + i

√
5, which means ab + bc + ca = (−

√
3
4 + i

√
5
2 )(
√

3 + i
√

5) =
−13+i

√
15

4 . Then,

a1a2 + b1b2 + c1c2 =
1

2
Im(a2 + b2 + c2)

=
1

2
Im((a+ b+ c)2)− Im(ab+ bc+ ca)

=

√
15

4
,

so the answer is 1516.

Remark:

{a, b, c} =

{
−
√

3− i
√

5

2
,
−3
√

3− i
√

5

4
,

3
√

3− i
√

5

4

}



8. For positive integers a and b, let M(a, b) = lcm(a,b)
gcd(a,b) , and for each positive integer n ≥ 2, define

xn = M(1,M(2,M(3, . . . ,M(n− 2,M(n− 1, n)) . . . ))).

Compute the number of positive integers n such that 2 ≤ n ≤ 2021 and 5x2n + 5x2n+1 = 26xnxn+1.

Proposed by: Hahn Lheem

Answer: 20

Solution: The desired condition is that xn = 5xn+1 or xn+1 = 5xn.

Note that for any prime p, we have νp(M(a, b)) = |νp(a)− νp(b)|. Furthermore, νp(M(a, b)) ≡ νp(a) +
νp(b) mod 2. So, we have that

νp(xn) ≡ νp(1) + νp(2) + · · ·+ νp(n) mod 2.

Subtracting gives that νp(xn+1)−νp(xn) ≡ νp(n+1) mod 2. In particular, for p 6= 5, νp(n+1) must be

even, and ν5(n+1) must be odd. So n+1 must be a 5 times a perfect square. There are
⌊√

2021
5

⌋
= 20

such values of n in the interval [2, 2021].

Now we show that it is sufficient for n + 1 to be 5 times a perfect square. The main claim is that if
B > 0 and a sequence a1, a2, . . . , aB of nonnegative real numbers satisfies an ≤ B +

∑
i<n ai for all

1 ≤ n ≤ N , then ∣∣∣∣∣a1 −
∣∣∣∣a2 − ∣∣∣· · · − ∣∣aN−1 − aN ∣∣∣∣∣ · · · ∣∣∣∣

∣∣∣∣∣ ≤ B.
This can be proved by a straightforward induction on N . We then apply this claim, with B = 1, to
the sequence ai = νp(i); it is easy to verify that this sequence satisfies the condition. This gives

νp(xn) =

∣∣∣∣∣νp(1)−
∣∣∣∣νp(2)−

∣∣∣· · · − ∣∣νp(n− 1)− νp(n)
∣∣∣∣∣ · · · ∣∣∣∣

∣∣∣∣∣ ≤ 1,

so νp(xn) must be equal to
(
νp(1) + · · · + νp(n)

)
mod 2. Now suppose n + 1 = 5k2 for some k; then

νp(n + 1) ≡ 0 mod 2 for p 6= 5 and ν5(n + 1) ≡ 1 mod 2. Therefore νp(xn+1) = νp(xn) for p 6= 5, and
ν5(xn+1) = (ν5(xn) + 1) mod 2, and this implies xn+1/xn ∈ {1/5, 5} as we wanted.

9. Let f be a monic cubic polynomial satisfying f(x) + f(−x) = 0 for all real numbers x. For all real
numbers y, define g(y) to be the number of distinct real solutions x to the equation f(f(x)) = y.
Suppose that the set of possible values of g(y) over all real numbers y is exactly {1, 5, 9}. Compute
the sum of all possible values of f(10).

Proposed by: Sujay Kazi

Answer: 970

Solution: We claim that we must have f(x) = x3−3x. First, note that the condition f(x)+f(−x) = 0
implies that f is odd. Combined with f being monic, we know that f(x) = x3 + ax for some real
number a. Note that a must be negative; otherwise f(x) and f(f(x)) would both be increasing and 1
would be the only possible value of g(y).

Now, consider the condition that the set of possible values of g(y) is {1, 5, 9}. The fact that we can
have g(y) = 9 means that some horizontal line crosses the graph of f(f(x)) 9 times. Since f(f(x)) has
degree 9, this means that its graph will have 4 local maxima and 4 local minima.

Now, suppose we start at some value of y such that g(y) = 9, and slowly increase y. At some point,
the value of g(y) will decrease. This happens when y is equal to a local maximum of f. Since g(y)



must jump from 9 down to 5, all four local maxima must have the same value. Similarly, all four
local minima must also have the same value. Since f is odd, it suffices to just consider the four local
maxima.

The local maximum of f(x) occurs when 3x2+a = 0. For convenience, let a = −3b2, so f(x) = x3−3b2x.
Then, the local maximum is at x = −b, and has a value of f(−b) = 2b3.

We consider the local maxima of f(f(x)) next. They occur either when x = −b (meaning f(x) is at
a local maximum) or f(x) = −b. If f(x) = −b, then f(f(x)) = f(−b) = 2b3. Thus, we must have
f(f(−b)) = f(2b3) = 2b3.

This yields the equation
f(2b3) = 8b9 − 3b2 · 2b3 = 2b3

which factors as 2b3
(
b2 − 1

) (
2b2 + 1

)2
. The only possible value of b2 is 1. Thus, f(x) = x3 − 3x, and

our answer is 103 − 3 · 10 = 970.

10. Let S be a set of positive integers satisfying the following two conditions:

• For each positive integer n, at least one of n, 2n, . . . , 100n is in S.

• If a1, a2, b1, b2 are positive integers such that gcd(a1a2, b1b2) = 1 and a1b1, a2b2 ∈ S, then
a2b1, a1b2 ∈ S.

Suppose that S has natural density r. Compute the minimum possible value of b105rc.
Note: S has natural density r if 1

n |S ∩ {1, ..., n}| approaches r as n approaches ∞.

Proposed by: Milan Haiman

Answer: 396

Solution: The optimal value of r is 1
252 . This is attained by letting S be the set of integers n for

which ν2(n) ≡ 4 mod 5 and ν3(n) ≡ 1 mod 2.

Let S be a set of positive integers satisfying the two conditions. For each prime p, let Ap = {νp(n) :
n ∈ S}. We claim that in fact S is precisely the set of positive integers n for which νp(n) ∈ Ap for
each prime p.

Let p be prime and suppose that a1p
e1 , a2p

e2 ∈ S, with p - a1, a2. Then, setting b1 = pe1 and b2 = pe2

in the second condition gives that a1p
e2 ∈ S as well. So, if we have an integer n for which νp(n) ∈ Ap

for each prime p, we can start with any element n′ of S and apply this step for each prime divisor of
n and n′ to obtain n ∈ S.

Now we deal with the first condition. Let n be any positive integer. We will compute the least positive
integer m such that mn ∈ S. By the above result, we can work with each prime separately. For a given
prime p, let ep be the least element of Ap with ep ≥ νp(n). Then we must have νp(m) ≥ ep − νp(n),
and equality for all primes p is sufficient. So, if the elements of Ap are cp,1 < cp,2 < cp,3 < cp,4 < . . . ,
then

cp = max(cp,1, cp,2 − cp,1 − 1, cp,3 − cp,2 − 1, cp,4 − cp,3 − 1, . . . )

is the worst case value for νp(m).

We conclude two things from this. First, we must have
∏
p p

cp ≤ 100 by condition 1, and in fact this
is sufficient. Second, since we only care about cp and would like to minimize r, the optimal choice for
Ap is an arithmetic progression with first term cp and common difference cp + 1. So we assume that
each Ap is of this form.

Let t =
∏
p p

cp . We now compute r. Note that S is the set of integers n such that for each prime p,

n ≡ apk(cp+1)−1 mod pk(cp+1)



for some positive integers a, k with a < p. This means that each prime p contributes a factor of

p− 1

pcp+1
+

p− 1

p2cp+2
+

p− 1

p3cp+3
+ · · · = p− 1

pcp+1 − 1
=

1

1 + p+ · · ·+ pcp

to the density of S. Multiplying over all primes p gives r = 1
σ(t) , where σ(t) is the sum of divisors of t.

So, it suffices to maximize σ(t) for t ≤ 100. By inspection, t = 96 is optimal, giving r = 1
252 .


