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Algebra and Number Theory Round

1. Compute the sum of all positive integers n for which the expression

n+7
vn—1

is an integer.
Proposed by: Ryan Kim

Answer:

Solution: We know y/n — 1 must be a positive integer, because the numerator is a positive integer,
and the square root of an integer cannot be a non-integer rational. From this,

n+7 8
— 4/ —1+
vn—1 " vn—1

is a positive integer, so we v/n — 1 must be a positive integer that divides 8. There are 4 such positive
integers: 1, 2,4, 8, which give n = 2,5,17,65, so the answer is 89.

2. Compute the number of ordered pairs of integers (a,b), with 2 < a,b < 2021, that satisfy the equation

alogb(a74) — blogny(bafs) )

Proposed by: Vincent Bian

Answer:

Solution: Taking log, of both sides and simplifying tives
—4log, a = (log, b)* — 3log, b.
Plugging in = = log, b and using log, a = log#b gives

=322 +4=0.

We can factor the polynomial as (x — 2)(z — 2)(z + 1), meaning b = a® or b = a~'. The second
case is impossible since both a and b are positive integers. So, we need only count the number of
1 < a,b <2021 for which b = a?, which is [v/2021] — 1 = 43.

3. Among all polynomials P(z) with integer coefficients for which P(—10) = 145 and P(9) = 164, compute
the smallest possible value of |P(0)].

Proposed by: Carl Schildkraut

Answer:

Solution: Since a — b|P(a) — P(b) for any integer polynomial P and integers a and b, we require that
10|P(0) — P(—10) and 9|P(0) — P(9). So, we are looking for an integer a near 0 for which

a =5mod 10, a =2 mod 9.

The smallest such positive integer is 65, and the smallest such negative integer is —25. This is achiev-
able, for example, if P(z) = 222 + 3z — 25, so our answer is 25.



4. Suppose that P(z,y, z) is a homogeneous degree 4 polynomial in three variables such that P(a,b,c) =
P(b,c,a) and P(a,a,b) =0 for all real a, b, and c. If P(1,2,3) =1, compute P(2,4,38).

Note: P(z,y,2) is a homogeneous degree 4 polynomial if it satisfies P(ka, kb, kc) = k*P(a, b, c) for all
real k,a,b,c.

Proposed by: Milan Haiman

Answer:

Solution: Since P(a,a,b) =0, (x —y) is a factor of P, which means (y — z) and (z — ) are also factors
by the symmetry of the polynomial. So,

P(x,y,2)
(x—y)(y —2)(z — )

is a symmetric homogeneous degree 1 polynomial, so it must be k(x + y + z) for some real k. So, the
answer is

P(2,4,8)  (24+4+8)(2—4)(4—8)(8—2) 56
P(1,2,3)  (1+2+3)(1-2)(2-3)3-1)

5. Let n be the product of the first 10 primes, and let
S=Y o) -y,
zy|n
where ¢(x) denotes the number of positive integers less than or equal to x that are relatively prime to
x, and the sum is taken over ordered pairs (z,y) of positive integers for which zy divides n. Compute

S

'

Proposed by: Hahn Lheem

Answer:

Solution 1: We see that, for any positive integer n,
n
S=> @) y=> @ (> y|=> ¢@o (;) :
zyln z|n yl% z|n

Since ¢ and o are both weakly multiplicative (if  and y are relatively prime, then ¢(xy) = o(z)p(y)
and o(zy) = o(z)o(y)), we may break this up as

[1(ew) + o)),

P

where the product is over all primes that divide n. This is simply 2'%n, giving an answer of 210 = 1024.

Solution 2: We recall that

Z o(d) =n.
d|n

So, we may break up the sum as

S = Zso(x)-yZwa(x)Zy(Z),

wyln yln 2|2 yln

so S is simply n times the number of divisors of n. This number is 2!° = 1024.



Solution 3: When constructing a term in the sum, for each prime p dividing n, we can choose to
include p in z, or in y, or in neither. This gives a factor of p — 1, p, or 1, respectively. Thus we can
factor the sum as
S:H(p71+p+1) :HQp:210n.
pln pln

So the answer is 1024.

. Suppose that m and n are positive integers with m < n such that the interval [m,n) contains more
multiples of 2021 than multiples of 2000. Compute the maximum possible value of n — m.

Proposed by: Carl Schildkraut

Answer:

Solution: Let a = 2021 and b = 2000. It is clear that we may increase y — x unless both z — 1 and
y + 1 are multiples of b, so we may assume that our interval is of length b(k + 1) — 1, where there are
k multiples of b in our interval. There are at least k£ + 1 multiples of a, and so it is of length at least
ak + 1. We thus have that

a—2>b

b—2
ak—|—1§b(k—|—1)—1:>(a—b)ka—2=>k:§{ J

So, the highest possible value of k is 95, and this is achievable by the Chinese remainder theorem,
giving us an answer of 191999.

. Suppose that x, y, and z are complex numbers of equal magnitude that satisfy
3
rT+y+z= —g —iV5

and

TYz = V3 + V5.

If x =x1 +ixe, y =y1 +iy2, and z = 21 + izo for real z1, x2, y1, Y2, 21, and z3, then
(172 + Y192 + 2’12’2)2

can be written as § for relatively prime positive integers a and b. Compute 100a + b.
Proposed by: Akash Das

Answer:

Solution: From the conditions, it is clear that a,b,c all have magnitude v/2. Conjugating the first
equation gives 2(4btbetea) — —? + iv/5, which means ab + bc + ca = (—% + z%)(\/g—i— iV5) =
%. Then

aras + biby + cicp = = Im(a® + b* + ¢2)

Im((a + b+ ¢)?) — Im(ab + be + ca)

N = DN =

ot

so the answer is 1516.

Remark:

—V3—iv5 =3v3—-iV5 3V3-iV5
{a?b7c}: 2 i 4 ) 4



_ lem(a,b)
— gecd(a,b)

Tp =M1, M2,M(3,...,M(n—2,M(n—1,n))...))).

8. For positive integers a and b, let M (a,b) , and for each positive integer n > 2, define

Compute the number of positive integers n such that 2 < n <2021 and 5xi + SIEL_H = 262,Typ41-
Proposed by: Hahn Lheem
Answer:
Solution: The desired condition is that x,, = 5,41 or Tp41 = 52y.
Note that for any prime p, we have v,(M(a, b)) = |vp(a) — v,(b)|. Furthermore, v,(M (a,b)) = vp(a) +
vp(b) mod 2. So, we have that

Up(xn) = vp(1) +vp(2) + - - - + vp(n) mod 2.

Subtracting gives that vp(zp41) —Vp(2n) = vp(n+1) mod 2. In particular, for p # 5, vp(n+1) must be
even, and v5(n+1) must be odd. So n+1 must be a 5 times a perfect square. There are b / %J =20
such values of n in the interval [2,2021].

Now we show that it is sufficient for n + 1 to be 5 times a perfect square. The main claim is that if
B > 0 and a sequence a1, as,...,ap of nonnegative real numbers satisfies a, < B + ZKn a; for all
1 <n <N, then

a] — SB

az_’..._}aN_l_aN”...‘

This can be proved by a straightforward induction on N. We then apply this claim, with B = 1, to
the sequence a; = vp(4); it is easy to verify that this sequence satisfies the condition. This gives

Vp(xn) = Vp(l) - <1,

(@)~ |-+~ ’yp(n—l)—yp(n)”...’

$0 vp(z,) must be equal to (v,(1) + -+ + v,(n)) mod 2. Now suppose n + 1 = 5k for some k; then
vp(n+1) =0mod 2 for p # 5 and vs(n + 1) = 1 mod 2. Therefore v,(xp4+1) = vp(zy) for p # 5, and
Us(ny1) = (vs(zn) + 1) mod 2, and this implies z,1/x, € {1/5,5} as we wanted.

9. Let f be a monic cubic polynomial satisfying f(x) + f(—x) = 0 for all real numbers 2. For all real
numbers y, define g(y) to be the number of distinct real solutions x to the equation f(f(x)) = v.
Suppose that the set of possible values of g(y) over all real numbers y is exactly {1,5,9}. Compute
the sum of all possible values of f(10).

Proposed by: Sujay Kazi

Answer: | 970

Solution: We claim that we must have f(x) = 2® —3x. First, note that the condition f(z)+ f(—x) =0
implies that f is odd. Combined with f being monic, we know that f(z) = 2® + ax for some real

number a. Note that a must be negative; otherwise f(x) and f(f(x)) would both be increasing and 1
would be the only possible value of g(y).

Now, consider the condition that the set of possible values of g(y) is {1,5,9}. The fact that we can
have g(y) = 9 means that some horizontal line crosses the graph of f(f(z)) 9 times. Since f(f(x)) has
degree 9, this means that its graph will have 4 local maxima and 4 local minima.

Now, suppose we start at some value of y such that g(y) = 9, and slowly increase y. At some point,
the value of g(y) will decrease. This happens when y is equal to a local maximum of f. Since g(y)



10.

must jump from 9 down to 5, all four local maxima must have the same value. Similarly, all four
local minima must also have the same value. Since f is odd, it suffices to just consider the four local
maxima.

The local maximum of f(z) occurs when 32%+a = 0. For convenience, let a = —3b2, so f(z) = 23 —3bz.
Then, the local maximum is at = —b, and has a value of f(—b) = 2b°.
We consider the local maxima of f(f(x)) next. They occur either when z = —b (meaning f(z) is at

a local maximum) or f(z) = —b. If f(x) = —b, then f(f(x)) = f(—b) = 2b>. Thus, we must have
F(f(=0)) = f(26%) = 2v°.
This yields the equation

f(2b%) = 8b? — 3b? - 20 = 20°

which factors as 2b3 (b2 — 1) (2b2 + 1)2 . The only possible value of b? is 1. Thus, f(z) = 2® — 3z, and
our answer is 103 — 3 - 10 = 970.

Let S be a set of positive integers satisfying the following two conditions:

e For each positive integer n, at least one of n,2n,...,100n is in S.

o If ay,as,b1,by are positive integers such that ged(ajas,bibs) = 1 and ajby,asbs € S, then
ashi,a1by € S.

Suppose that S has natural density 7. Compute the minimum possible value of [10°7].
Note: S has natural density r if %\S N{1,...,n}| approaches r as n approaches occ.
Proposed by: Milan Haiman
Answer: | 396

1

Solution: The optimal value of r is 5z5. This is attained by letting S be the set of integers n for
which v2(n) =4 mod 5 and v3(n) =1 mod 2.

Let S be a set of positive integers satisfying the two conditions. For each prime p, let A, = {v,(n) :
n € S}. We claim that in fact S is precisely the set of positive integers n for which v,(n) € A, for
each prime p.

Let p be prime and suppose that a;p®,asp® € S, with ptaj,as. Then, setting by = p®* and by = p©2
in the second condition gives that a;p®> € S as well. So, if we have an integer n for which v,(n) € A,
for each prime p, we can start with any element n’ of S and apply this step for each prime divisor of
n and n’ to obtain n € S.

Now we deal with the first condition. Let n be any positive integer. We will compute the least positive
integer m such that mn € S. By the above result, we can work with each prime separately. For a given
prime p, let e, be the least element of A, with e, > v,(n). Then we must have v,(m) > e, — v,(n),
and equality for all primes p is sufficient. So, if the elements of A, are ¢,1 < cp2 < cp3 < cpa < ...,
then

¢p =max(cp1,Cp2 —Cp1— 1,¢p3—Cpa—1,cpa—Cps—1,...)

is the worst case value for v,(m).

We conclude two things from this. First, we must have Hp p°» < 100 by condition 1, and in fact this
is sufficient. Second, since we only care about ¢, and would like to minimize r, the optimal choice for
Ay is an arithmetic progression with first term ¢, and common difference ¢, + 1. So we assume that
each A, is of this form.

Let t = Hp p°?. We now compute r. Note that S is the set of integers n such that for each prime p,

n= apk(cerl)fl mod pk(cerl)



for some positive integers a, k with a < p. This means that each prime p contributes a factor of

p—1 p—1 p—1 p—1 1

pertl + p2ent2 T 3, +3 T = Pt 1 14pot - +por

to the density of S. Multiplying over all primes p gives r = ﬁ, where o(t) is the sum of divisors of ¢.

So, it suffices to maximize o(t) for ¢ < 100. By inspection, ¢t = 96 is optimal, giving r = ﬁ



