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1. [40] Let a and b be positive integers with a > b. Suppose that√√
a+
√
b+

√√
a−
√
b

is a integer.

(a) Must
√
a be an integer?

(b) Must
√
b be an integer?

Proposed by: Daniel Zhu

Answer: (a) Yes (b) No

Solution 1: Let r =

√√
a+
√
b and s =

√√
a−
√
b. We know r2 + s2 = 2

√
a and r2 − s2 = 2

√
b.

If r + s is an integer k, then

√
a =

r2 + s2

2
=

(r + s)2 + (r − s)2

4
=
k2 + 4b/k2

4
,

which is rational. Recall that since a is a positive integer,
√
a is either an integer or an irrational

number. (Proof: if
√
a = p/q for relatively prime positive integers p, q, then p2/q2 is an integer, which

implies q = 1.) Thus the answer to part (a) is yes.

The answer to part (b) is no because

(2±
√

2)2 = 6±
√

32,

meaning that setting a = 36 and b = 32 is a counterexample.

Solution 2: Second solution for part (a): Squaring

√√
a+
√
b+

√√
a−
√
b, we see that 2

√
a+2
√
a− b

is an integer. Hence
√
a− b = m −

√
a for some rational number m. Squaring both sides of this, we

see that a− b = m2 − 2m
√
a+ a, so

√
a = m2+b

2m , a rational number. As in the first solution, it follows
that

√
a is an integer.

2. [50] Let ABC be a right triangle with ∠A = 90◦. A circle ω centered on BC is tangent to AB at D
and AC at E. Let F and G be the intersections of ω and BC so that F lies between B and G. If lines
DG and EF intersect at X, show that AX = AD.

Proposed by: Krit Boonsiriseth

Solution 1: In all solutions, let O be the center of ω. Then ∠DOE = 90◦, so ∠DFE = 45◦, so

∠DXE = 135◦. Let Γ be the circle centered at A with radius AD = AE, and let X ′ =
−−→
AX ∩ Γ. Then

∠DXE = ∠DX ′E = 135◦, so X = X ′.

Solution 2: Let N be the midpoint of arc FDEG. Note that DOEA is a square. Also, DXEN is
a parallelogram; one way to see this is that by considering inscribed angles, ∠NEX = ∠NEF = 45◦,
∠NDX = ∠NDG = 45◦, and ∠END = 135◦. This means that 4AXD ∼= 4ONE, because AD =
OE, XD = NE, and ∠ADX = ∠OEN by considering parallel lines. So AX = ON = OE = AD.

Solution 3: Let Y = DF ∩ EG. Since GX ⊥ FY and FX ⊥ GY , X is the orthocenter of 4FGY .
Since (AODE) passes through the midpoint of FG, and the feet of altitudes from F and G, (AODE)
is the nine-point circle of 4FGY . Since AO is the diameter of (AODE), it follows that A is the



midpoint of XY , so A is the center of (DXEY ), so AX = AD.

Solution 4: Let Z = DE∩FG, possibly at infinity. Then A and X are on the polar of Z with respect
to ω, so AX ⊥ BC. Let J = AX ∩ BC. Then (XJFD) is cyclic, so ∠ADX = ∠DFJ = ∠DXA, so
AX = AD.

Solution 5: We use complex numbers, with (FDEG) being the unit circle, and d = −1, e = −i. As
FG is a diameter of the unit circle, we have g = −f . We have a = −1− i, from either intersecting the
tangents to the unit circle at D and E or noting that ADOE is a square.

Now, intersecting the chords DG and EF , we obtain

x =
dg(e+ f)− ef(d+ g)

dg − ef
=
f(i+ f) + if(1− f)

f + if
=
f − i− i− if

1 + i
= −1− i+ f · 1− i

1 + i
.

So,

|x− a| =
∣∣∣∣f · 1− i

1 + i

∣∣∣∣ = 1 ·
√

2√
2

= 1.

So AX and AD have the same length (1 unit), as desired.

3. [50] Let m be a positive integer. Show that there exists a positive integer n such that each of the
2m+ 1 integers

2n −m, 2n − (m− 1), . . . , 2n + (m− 1), 2n +m

is positive and composite.

Proposed by: Michael Ren

Solution: Let P be the set of prime divisors of the 2m+ 1 numbers

2m+1 −m, 2m+1 −m+ 1, . . . , 2m+1 +m.

We claim that
n = m+ 1 +

∏
p∈P

(p− 1)

works. To check this, let k be any integer with |k| ≤ m. We can take some prime q|2m+1 + k, as
2m+1 + k ≥ 2m+1 −m ≥ 3. Let

∏
p∈P (p− 1) = (q − 1)αq. Then, applying Fermat’s little theorem, we

have
2n ≡ 2m+1 · (2q−1)αq ≡ 2m+1 ≡ −k (mod q)

Thus, 2n + k is divisible by q and is bigger than q, so it is positive and composite. This works for each
of the required k, so we are done.

4. [60] Let k and n be positive integers and let

S = {(a1, . . . , ak) ∈ Zk | 0 ≤ ak ≤ · · · ≤ a1 ≤ n, a1 + · · ·+ ak = k}.

Determine, with proof, the value of ∑
(a1,...,ak)∈S

(
n

a1

)(
a1
a2

)
· · ·
(
ak−1
ak

)

in terms of k and n, where the sum is over all k-tuples (a1, . . . , ak) in S.

Proposed by: Milan Haiman



Answer:
(
k+n−1

k

)
=
(
k+n−1
n−1

)
Solution 1: Let

T = {(b1, . . . , bn) | 0 ≤ b1, . . . , bn ≤ k, b1 + · · ·+ bn = k}.

The sum in question counts |T |, by letting ai be the number of bj that are at least i. By stars and

bars, |T | =
(
k+n−1

k

)
.

One way to think about T is as follows. Suppose we wish to choose k squares in a grid of squares with
k rows and n columns, such that each square not in the bottom row has a square below it. If we divide
the grid into columns and let bj be the number of chosen squares in the jth column then we get that
T is in bijection with valid ways to choose our k squares.

On the other hand, if we divide the grid into rows, and let ai be the number of chosen squares in the
ith row (counting up from the bottom), then we obtain the sum in the problem. This is because we
have

(
n
a1

)
choices for the squares in the first row, and

(
ai−1

ai

)
choices for the squares in the ith row,

given the squares in the row below, for each i = 2, . . . , k.

Solution 2: Define

Fk(x, y) =
∑

n,a1,...,ak

(
n

a1

)
· · ·
(
ak−1
ak

)
xnya1+···+ak ,

where the sum is over all nonegative integers n, a1, . . . , ak (the nonzero terms have n ≥ a1 ≥ · · · ≥ ak).
Note that we are looking for the coefficient of xnyk in Fk(x, y). By first summing over ak on the inside
and using the Binomial theorem, we obtain

Fk(x, y) =
∑

n,a1,...,ak−1

(
n

a1

)
· · ·
(
ak−2
ak−1

)
xnya1+···+ak−1(1 + y)ak−1 .

Now, we repeat this by summing over ak−1, then ak−2, and so on. We obtain

Fk(x, y) =
∑
n

xn(1 + y + · · ·+ yk)n.

So the answer is just the coefficient yk in (1 + y + · · ·+ yk)n. By stars and bars, this is
(
k+n−1

k

)
.

Although we didn’t need it, another way to write Fk(x, y) is

Fk(x, y) =
1

1− x− xy − · · · − xyk
.

Solution 3: Let

S(n, k, k′) = {(a1, . . . , ak) | 0 ≤ ak ≤ · · · ≤ a1 ≤ n, a1 + · · ·+ ak = k′},

and note that S(n, k, k) is the set S in the problem.

Define

f(n, k, k′) =
∑

(a1,...,ak)∈S(n,k,k′)

(
n

a1

)(
a1
a2

)
· · ·
(
ak−1
ak

)
.

Now, consider (a1, . . . , ak) ∈ S(n, k, k′). We have

iai ≤ a1 + · · ·+ ak = k′.

So ai ≤ k′

i . In particular, if k > k′, then we have ai = 0 for each k′ < i ≤ k. This means that
f(n, k, k′) = f(n, k′, k′) if k > k′.



Now, let f(n, k) = f(n, k, k) be the answer. Splitting the sum based on the possible values of a1 gives

f(n, k) =
∑
a1

(
n

a1

)
f(a1, k − 1, k − a1).

For k > 0, we must have a1 ≥ 1, which means

f(a1, k − 1, k − a1) = f(a1, k − a1, k − a1) = f(a1, k − a1).

So, we obtain the recurrence

f(n, k) =
∑
a1

(
n

a1

)
f(a1, k − a1).

Now we claim f(n, k) =
(
k+n−1

k

)
. We proceed by induction, with our base case being k = 1. The claim

is easy to verify for k = 1.

In the inductive step, we obtain

f(n, k) =
∑
a1

(
n

a1

)(
k − 1

k − a1

)
=

(
k + n− 1

k

)
,

where we applied Vandermonde’s identity in the last equality.

5. [60] A convex polyhedron has n faces that are all congruent triangles with angles 36◦, 72◦, and 72◦.
Determine, with proof, the maximum possible value of n.

Proposed by: Handong Wang

Answer: 36

Solution: Consider such a polyhedron with V vertices, E edges, and F = n faces. By Euler’s formula
we have V + F = E + 2.

Next, note that the number of pairs of incident faces and edges is both 2E and 3F , so 2E = 3F .

Now, since our polyhedron is convex, the sum of the degree measures at each vertex is strictly less than
360 = 36 · 10. As all angle measures of the faces of our polyhedron are divisible by 36, the maximum
degree measure at a given vertex is 36 · 9 = 324. On the other hand, the total degree measure at all
vertices is the total degree measure over all faces, which is 180F . Thus we have 180F ≤ 324V , or
10F ≤ 18V .

Putting our three conditions together, we have

10F ≤ 18V = 18(E + 2− F ) = 9(2E) + 36− 18F = 9(3F ) + 36− 18F = 9F + 36.

Thus F ≤ 36.

F = 36 is attainable by taking a 9-gon antiprism with a 9-gon pyramid attached on the top and the
bottom. Thus the answer is 36.

6. [70] Let f(x) = x2 + x+ 1. Determine, with proof, all positive integers n such that f(k) divides f(n)
whenever k is a positive divisor of n.

Proposed by: Milan Haiman

Answer: n can be 1, a prime that is 1 mod 3, or the square of any prime except 3.

Solution: The answer is n can be 1, a prime that is 1 mod 3, or the square of any prime except 3. It
is easy to verify that all of these work.



First note that n must be 1 mod 3 since 1 divides n implies f(1) divides f(n).

Next, suppose for sake of contradiction that n = ab, with a > b > 1. We are given that f(a) divides
f(n), which means f(a) divides f(n)− f(a). We can write this as

a2 + a+ 1 | n2 + n− a2 − a = (n− a)(n+ a+ 1).

Since we are working mod a2 + a+ 1, we can replace a+ 1 with −a2, so we have

a2 + a+ 1 | (n− a)(n− a2) = a2(b− 1)(b− a).

However, a2 + a+ 1 cannot share any factors with a, and 0 < |(b− 1)(b− a)| < a2 + a+ 1, which is a
contradiction.

7. [70] In triangleABC, letM be the midpoint ofBC andD be a point on segmentAM . Distinct points Y

and Z are chosen on rays
−→
CA and

−−→
BA, respectively, such that ∠DY C = ∠DCB and ∠DBC = ∠DZB.

Prove that the circumcircle of 4DY Z is tangent to the circumcircle of 4DBC.

Proposed by: Joseph Heerens

Solution 1: We first note that the circumcircles of DBZ and Y DC are tangent to BC from our angle
criteria. By power of a point, we obtain that M lies on the radical axis of the two circles and clearly
D does as well. Therefore, we find that A lies on the radical axis so AY ·AC = AB ·AZ implying that
BY ZC is a cyclic quadrilateral.

Next, by Reim’s Theorem on (BY ZC) and (DY Z), we get that (DY Z) intersects AB,AC at B′, C ′

where BC,B′C ′ are parallel. Then a negative homothety maps B to B′ and C to C ′, so (DBC) gets
mapped to (DB′C ′), and we have tangent circles.

Solution 2: Let (DY Z) intersect AB and AC at B′ and C ′, respectively. We see that ]Y C ′B′ =
]Y ZB′ = ]Y ZB = ]Y CB. Thus, BC ‖ B′C ′. This means that there exists a negative homothety
taking B to B′ and C to C ′ which will map (DBC) to (DB′C ′) which is also (DY Z).

8. [80] For each positive real number α, define

bαNc := {bαmc | m ∈ N}.

Let n be a positive integer. A set S ⊆ {1, 2, . . . , n} has the property that: for each real β > 0,

if S ⊆ bβNc , then {1, 2, . . . , n} ⊆ bβNc .

Determine, with proof, the smallest possible size of S.

Proposed by: Krit Boonsiriseth

Answer: bn/2c+ 1

Solution: For each k ∈ {dn/2e, . . . , n}, picking β = 1 + 1/k gives

bβNc ∩ [n] = [n] \ {k}

so S must contain k.

Now we show that S = {dn/2e, . . . , n} works; this set S has bn/2c+ 1 elements.

Suppose β satisfy S ⊆ bβNc, and suppose for the sake of contradiction that [n] 6⊂ bβNc. Since we may
increase β by a small amount ε without affecting bβNc ∩ [n], we may assume β is irrational. Let α
satisfy 1/α+ 1/β = 1. By Beatty’s Theorem, bαNc and bβNc are complement sets in N.



Let m be the maximal element of [n] that is not in bβNc. Then m = bkαc for some integer k. Consider
m′ = b2kαc ∈ {2m, 2m+ 1}, which must be an element of bαNc. Clearly, m′ > m, and since m < n/2,
m′ 6 n, so m′ is also an element of [n] that is not in bβNc. This contradicts the maximality of m, and
we are done.

9. [90] Let scalene triangle ABC have circumcenter O and incenter I. Its incircle ω is tangent to sides
BC, CA, and AB at D, E, and F , respectively. Let P be the foot of the altitude from D to EF , and
let line DP intersect ω again at Q 6= D. The line OI intersects the altitude from A to BC at T . Given
that OI ‖ BC, show that PQ = PT .

Proposed by: Carl Schildkraut, Milan Haiman

Solution: Let H be the orthocenter of ∆DEF . We first claim that O, I,H are collinear. We present
two proofs.

Proof 1. Invert about ω. Circle (ABC) inverts to a circle with center on OI, but A,B,C invert to the
midpoints of EF,FD,DE, respectively, so the nine-point center of ∆DEF is on OI. As this center is
the midpoint of IH, we get that H, I,O are collinear. �

Proof 2. Let QA, QB , QC be the second intersections of the D−, E−, and F− altitudes, respectively,
in ∆DEF with ω. We claim ∆QAQBQC is homothetic with ∆ABC. Indeed, as QB is the reflection
of H over DF and QC is the reflection of H over DE, DQB = DQC , so the perpendicular bisector of
QBQC is line ID. As ID ⊥ BC, QBQC ||BC, whence the homothety follows. This homothety takes
the incircle to the circumcircle, so it is centered on line OI. However, it also takes the incenter H of
QAQBQC to the incenter I of ABC, so it is centered on line IH. So, O, I,H are collinear. �

As P is the midpoint of QH, it suffices to show that P is on the circle with diameter QH, or that
∠QTH = 90◦. As AT ⊥ TH = IO, it suffices to show that Q is on line AT . We also present two
proofs of this.

Proof 1. Let D′ be the antipode of D, and let AD′ intersect BC at X. As X is the A-extouch point,
the midpoint M of DX is also the midpoint of BC. We have

OM

MX
=
ID
DX
2

=
DD′

DX

and ∠OMX = ∠D′DX = 90◦, so D′, O,X are collinear, so D′ is on line AO. As QD′||EF , AQ and
AD′ are isogonal in ∠BAC, so AQ and AO are isogonal, which means Q is on the A-altitude, finishing
the proof. �

Proof 2. Let Γ denote the circumcircle of ∆ABC, and let M be the midpoint of arc BC on Γ not
containing A.

Lemma. The intersection T ′ of MD and the A-altitude to BC is on the line through I parallel to
BC.

Proof. Let D′ = MA ∩BC. As ∠D′BM = ∠CBM = ∠CAM = ∠MAB, 4D′BM ∼ 4BAM , and

MI2 = MB2 = MD′ ·MA.

Since AT ′‖ID, we have
MT ′

MD
=
MA

MI
=

MI

MD′
,

so IT ′||DD′, finishing the proof. �

By the above lemma, T is on MD. Consider a homothety centered at T that takes D to M . It takes
ω to a circle centered on line IT that is tangent to Γ at M ; since O is on line IT this circle must be
Γ itself. So, T is the exsimilicenter of Γ and ω. By Proof 2 above, T is the center of the homothety
which sends QAQBQC to ABC, so T , Q = QA, and A are collinear, finishing the proof. �



10. [100] Let n > 1 be a positive integer. Each unit square in an n × n grid of squares is colored either
black or white, such that the following conditions hold:

• Any two black squares can be connected by a sequence of black squares where every two consec-
utive squares in the sequence share an edge;

• Any two white squares can be connected by a sequence of white squares where every two consec-
utive squares in the sequence share an edge;

• Any 2× 2 subgrid contains at least one square of each color.

Determine, with proof, the maximum possible difference between the number of black squares and
white squares in this grid (in terms of n).

Proposed by: Yuan Yao

Answer: 2n+ 1 if n is odd, 2n− 2 if n is even.

Solution: The first two conditions also imply that there can be no 2×2 checkerboards, so the boundary
between black squares and white squares is either a lattice path or cycle (if one color encloses the other).
Therefore, the set of squares of each color is the interior of a lattice polygon of genus 0 or 1. (In the
latter case, the genus-1 color uses all squares on the outer boundary, and the opposite color must be
genus-0.)

The third condition requires that the perimeter of each color passes through all (n−1)2 interior lattice
points, or else there will be a monochromatic 2×2 subgrid. Hence, by Pick’s Theorem, the area of one
color is at least (n−1)2/2−1 = (n2−2n−1)/2, and the difference is at most n2−(n2−2n−1) = 2n+1.

For even n, the number of interior lattice points is odd so there is no cycle that only uses them. (In
particular, this means that both colors are genus-0.) It is impossible for the perimeter to only go
through one boundary point either, so we need to add at least three more boundary points, which
means that we lose 2(3/2) = 3 from the bound for odd n.

Here is one possible set of constructions. Throughout, we’ll label the squares as (x, y), for 1 ≤ x, y ≤ n:

• For n = 2, we color (2, 2) black and the others white.

• For odd values of n, we create a comb shape using black squares. Specifically, the base of the
comb will consist of the squares (i, 2), for i = 2, 3, . . . , n−1. The teeth of the comb will be (2k, j),
for k = 1, 2, . . . , n−12 , and j = 3, 4, . . . , n− 1.

• For even values of n > 2, we make a modified comb shape. The base of the comb will be (i, 2)
for i = 2, 3, . . . , n, and the teeth will be (2k, j) for k = 1, 2, . . . , n2 − 1 and j = 3, 4, . . . , n − 1.
Furthermore, we add the square (n, 3), and the squares (n− 1, 2k + 3) for k = 1, 2, . . . , n2 − 2.


