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Algebra and Number Theory Round

1. Positive integers a, b, and c are all powers of k for some positive integer k. It is known that the
equation ax2 − bx+ c = 0 has exactly one real solution r, and this value r is less than 100. Compute
the maximum possible value of r.

Proposed by: Akash Das

Answer: 64

Solution: Note that for there to be exactly one solution, the discriminant must be 0, so b2 − 4ac = 0.
Thus, b is even, so k = 2. Since r = b

2a , then r is also a power of 2, and the largest power of 2 less
than 100 is 64. This is achieved by (x− 64)2 = x2 − 128x+ 4096.

2. Compute the number of positive integers that divide at least two of the integers in the set
{11, 22, 33, 44, 55, 66, 77, 88, 99, 1010}.
Proposed by: Daniel Zhu

Answer: 22

Solution: For a positive integer n, let radn be the product of the distinct prime factors of n. Observe
that if n | mm, all prime factors of n must divide m, so radn | m.

Therefore, if n is such an integer, radnmust divide at least two of the numbers in {1, 2, 3, 4, 5, 6, 7, 8, 9, 10},
implying that radn is either 1, 2, 3, or 5. These have 1, 10, 6, and 5 cases, respectively, for a total of 22.

3. Let x1, x2, . . . , x2022 be nonzero real numbers. Suppose that xk + 1
xk+1

< 0 for each 1 ≤ k ≤ 2022,

where x2023 = x1. Compute the maximum possible number of integers 1 ≤ n ≤ 2022 such that xn > 0.

Proposed by: Akash Das

Answer: 1010

Solution: Let the answer be M . If M > 1011, there would exist two consecutive positive terms
xk, xk+1 which contradicts the assumption that xk + 1

xk+1
< 0. Thus, M ≤ 1011. If M = 1011, then

the 2022 xis must alternate between positive and negative. WLOG, assume x2k−1 > 0 and x2k < 0 for
each k. Then, we have

x2k−1 +
1

x2k
< 0 =⇒ |x2k−1x2k| < 1,

x2k +
1

x2k+1
< 0 =⇒ |x2kx2k+1| > 1.

Multiplying the first equation over all k gives us
∏2022

i=1 |xi| < 1, while multiplying the second equation

over all k gives us
∏2022

i=1 |xi| > 1. Thus, we must have M < 1011.

M = 1010 is possible by the following construction:

1,−1

2
, 3,−1

4
, . . . , 2019,− 1

2020
,−10000,−10000.



4. Compute the sum of all 2-digit prime numbers p such that there exists a prime number q for which
100q + p is a perfect square.

Proposed by: Sheldon Kieren Tan

Answer: 179

Solution: All squares must end with 0, 1, 4, 5, 6, or 9, meaning that p must end with 1 and 9.
Moreover, since all odd squares are 1 mod 4, we know that p must be 1 mod 4. This rules all primes
except for 41, 61, 29, 89. Since 172 = 289, 192 = 361, 232 = 529, 89, 61, and 29 all work. To finish, we
claim that 41 does not work. If 100q + 41 were a square, then since all odd squares are 1 mod 8 we
find that 4q + 1 ≡ 1 (mod 8), implying that q is even. But 241 is not a square, contradiction.

The final answer is 29 + 61 + 89 = 179.

5. Given a positive integer k, let ∥k∥ denote the absolute difference between k and the nearest perfect
square. For example, ∥13∥ = 3 since the nearest perfect square to 13 is 16. Compute the smallest
positive integer n such that

∥1∥+ ∥2∥+ · · ·+ ∥n∥
n

= 100.

Proposed by: Carl Schildkraut

Answer: 89800

Solution: Note that from n = m2 to n = (m + 1)2, ∥n∥ increases from 0 to a peak of m (which is
repeated twice), and then goes back down to 0. Therefore

m2∑
n=1

∥n∥ =

m−1∑
k=1

2(1 + 2 + · · ·+ k) =

m−1∑
k=1

2

(
k + 1

2

)
= 2

(
m+ 1

3

)
=

m

3
(m2 − 1).

In particular, if n = m2 − 1,
∥1∥+ ∥2∥+ · · ·+ ∥n∥

n
=

m

3
,

so n = 3002−1 satisfies the condition. However, this does not prove that there are not smaller solutions
for n.

Let N = 3002 − 1 and suppose that N − k satisfies the condition. Then, we know that

∥N∥+ ∥N − 1∥+ · · · ∥N − (k − 1)∥
k

= 100.

Since ∥N −k∥ = k+1 for k ≤ 298, one can show that k = 199 works. By looking at further terms, one
can convince oneself that no larger value of k works. Thus, the answer is 3002−1−199 = 90000−200 =
89800.

6. Let f be a function from {1, 2, . . . , 22} to the positive integers such that mn | f(m) + f(n) for all
m,n ∈ {1, 2, . . . , 22}. If d is the number of positive divisors of f(20), compute the minimum possible
value of d.

Proposed by: Sheldon Kieren Tan

Answer: 2016

Solution: Let L = lcm(1, 2, . . . , 22). We claim that the possible values of f(20) are the multiples of
20L. If we can prove this, we will be done, since the minimum value of d will be the number of divisors
of 20L = 26 · 32 · 52 · 7 · 11 · 13 · 17 · 19, which has 7 · 32 · 25 = 2016 factors.



First let’s construct such an f . For any positive integer a, I claim that f(n) = aLn works. Indeed, for
any m,n, we find that f(m) = aLm is divisible by mn, since n | L. Thus the condition is satisfied.

Now let’s prove that f(20) must be a multiple of 20L. Take any prime p, and let q be the largest power
of p at most 22. If p ̸= 2, we know that q2 | 2f(q), meaning that q2 | f(q). Then, using the fact that
20q | f(q) + f(20), we find that gcd(20q, q2) | f(q), f(q) + f(20), implying that

νp(f(20)) ≥ νp(gcd(20q, q
2)) = νp(20q) = νp(20L).

Now suppose p = 2. Then 28 = 162 | 2f(16), so 27 | f(16). Then, since 5 · 26 = 20 · 16 | f(16) + f(20),
we find that 27 | f(20). Since 7 = ν2(20L), we are done.

7. Let (x1, y1), (x2, y2), (x3, y3), (x4, y4), and (x5, y5) be the vertices of a regular pentagon centered at
(0, 0). Compute the product of all positive integers k such that the equality

xk
1 + xk

2 + xk
3 + xk

4 + xk
5 = yk1 + yk2 + yk3 + yk4 + yk5

must hold for all possible choices of the pentagon.

Proposed by: Daniel Zhu

Answer: 1152

Solution: Without loss of generality let the vertices of the pentagon lie on the unit circle. Then, if
f(θ) = cos(θ)k and g(θ) =

∑4
j=0 f(θ + 2jπ/5), the condition becomes g(θ) = g(π/2 − θ), or g(θ) =

g(θ + π/2), since g is an odd function.

Write f ≍ g if f = cg for some nonzero constant c that we don’t care about. Since cos θ ≍ eiθ + e−iθ,
we find that

f(θ) ≍
∑
ℓ∈Z

(
k

k+ℓ
2

)
eiℓθ,

where
(
a
b

)
is defined to be zero if b is not an integer in the interval [0, a]. It is also true that

4∑
j=0

eiℓ(θ+2jπ/5) =

{
5eiθ 5 | ℓ
0 else,

so

g(θ) ≍
∑
ℓ∈5Z

(
k

k+ℓ
2

)
eiℓθ.

This is periodic with period π/2 if and only if all terms with ℓ not a multiple of 4 are equal to 0.
However, we know that the nonzero terms are exactly the ℓ that (1) are multiples of 5, (2) are of the
same parity as k, and (3) satisfy |ℓ| ≤ k. Hence, if k is even, the condition is satisfied if and only if
k < 10 (else the ℓ = 10 term is nonzero), and if k is odd, the condition is satisfied if and only if k < 5
(else the ℓ = 5 term is nonzero). Our final answer is 1 · 2 · 3 · 4 · 6 · 8 = 1152.

8. Positive integers a1, a2, . . . , a7, b1, b2, . . . , b7 satisfy 2 ≤ ai ≤ 166 and abii ≡ a2i+1 (mod 167) for each
1 ≤ i ≤ 7 (where a8 = a1). Compute the minimum possible value of b1b2 · · · b7(b1 + b2 + · · ·+ b7).

Proposed by: Gregory Pylypovych

Answer: 675

Solution: Let B = b1b2 · · · b7 − 128. Since

ab1b2···b71 ≡ a2b2b3···b72 ≡ a4b3b4···b73 ≡ · · · ≡ a1281 (mod 167),



we find that aB1 ≡ 1 (mod 167). Similarly, aBi ≡ 1 (mod 167) for all i. Since 167 is a prime and
167 − 1 = 2 · 83, we know that the order of each individual ai (since ai ̸= 1) must be either 2 of a
multiple of 83. If B is not a multiple of 83, then it follows that all the ai must be −1, which implies
that all the bi must be even, meaning that the minimum possible value of b1b2 · · · b7(b1 + b2 + · · · b7) is
27 · 14 > 1000.

Oh the other hand, if B is a multiple of 83, then the smallest possible values for b1b2 · · · b7 are 45 and
128. If b1b2 · · · b7 = 45, then the smallest possible value for b1+b2+· · ·+b7 is 5+3+3+1+1+1+1 = 15,
so the minimum possible value for b1b2 · · · b7(b1 + b2 + · · · b7) is 45 · 15 = 675. This can be achieved by
letting g be an element of order 83 and setting a1 = g, a2 = g1/2, a3 = g1/4, a4 = g1/8, a5 = g1/16, a6 =
g3/32, a7 = g9/64 (all exponents are taken mod 83).

If b1b2 · · · b7 ≥ 128, then by the AM-GM inequality we have

b1b2 · · · b7(b1 + b2 + · · · b7) ≥ 7(b1b2 · · · b7)8/7 ≥ 7 · 28 > 1000.

Therefore 675 is optimal.

9. Suppose P (x) is a monic polynomial of degree 2023 such that

P (k) = k2023P

(
1− 1

k

)
for every positive integer 1 ≤ k ≤ 2023. Then P (−1) = a

b , where a and b relatively prime integers.
Compute the unique integer 0 ≤ n < 2027 such that bn− a is divisible by the prime 2027.

Proposed by: Akash Das

Answer: 406

Solution: Let n = 2023. If P (x) = xn + an−1x
n−1 + · · ·+ a0, then let

R(x) = xnP (1− 1

x
) = (x− 1)n + an−1(x− 1)nx+ · · ·+ a0x

n.

Then, note that Q(x) = P (x)−R(x) is a polynomial of degree at most n, and it has roots 1, 2, . . . , n,
so we have Q(x) = k(x − 1) · · · (x − n) for some real constant k. Now we determine P (x) in terms of
Q(x). If g(x) = 1− 1/x, then g(g(x)) = 1

1−x and g(g(g(x))) = x. Therefore, we have

P (x)− xnP

(
1− 1

x

)
= Q(x)

P

(
1− 1

x

)
−

(
1− 1

x

)n

P

(
1

1− x

)
= Q

(
1− 1

x

)
P

(
1

1− x

)
−

(
1

1− x

)n

P (x) = Q

(
1

1− x

)
.

Adding the first equation, xn times the second, and (x− 1)n times the third yields

2P (x) = Q(x) + xnQ

(
x− 1

x

)
+ (x− 1)nQ

(
1

1− x

)
,

so

P (x) =
k

2

(
(x− 1)(x− 2) · · · (x− n) + (0x− 1)(−1x− 1) · · · (−(n− 1)x− 1)

+ (−1x+ 0)(−2x+ 1) · · · (−nx+ (n− 1))
)
.



Therefore,

P (−1) =
k

2
(−(n+ 1)! + 0 + (2n+ 1)!!).

Also, since P is monic, we know that

1 =
k

2
(1 + 0− n!),

so

P (−1) =
(2n− 1)!!− (n+ 1)!

1− n!
.

Modulo 2027, (n + 1)! = 2026!/(2026 · 2025) ≡ −1/(−1 · −2) ≡ −1/2 and n! = (n + 1)!/2024 ≡ 1/6.
Also, (2n+ 1)!! ≡ 0. So our answer is

1/2

1− 1/6
=

3

5
≡ 2030

5
= 406.

10. Compute the smallest positive integer n for which there are at least two odd primes p such that

n∑
k=1

(−1)νp(k!) < 0.

Note: for a prime p and a positive integer m, νp(m) is the exponent of the largest power of p that
divides m; for example, ν3(18) = 2.

Proposed by: Krit Boonsiriseth

Answer: 229

Solution: Say n is p-good if
∑n

k=1(−1)νp(k!) < 0, where p is an odd prime.

Claim. n is p-good iff

n+ 1 =

k∑
i=0

aip
2i+1,

where ai is an even integer with |ai| < p.

The proof of this claim will be deferred to the end of the solution as it is rather technical, and we
believe that it would be more illuminating for the reader to graph the function n 7→

∑n
k=1(−1)νp(k!)

and examine its properties, instead of focusing on the formal proof.

A consequence of the claim is that if n is p-good then p divides n + 1, and p2k−1 < n + 1 < p2k for
some k ∈ Z+.

Now suppose n is p-good and q-good for distinct odd primes p < q. Then n+1 ≥ pq > p2, so we must
have n+ 1 > p3.

Checking p = 3, the smallest potential n+ 1’s are

• 2 · 33 − 2 · 3 = 48, which does not have a prime factor q > 3.

• 2 · 33 = 54, which does not have a prime factor q > 3.

• 2 · 33 + 2 · 3 = 60, which does not work because 60 is the wrong size for q = 5.

The next value 2 · 35 − 2 · 33 − 2 · 3 is already bigger than 230.

Checking p = 5, the smallest potential n+ 1’s are

• 2 · 53 − 4 · 5 = 230, which works for q = 23.



For p ≥ 7, n+ 1 ≥ p3 > 230, so 229 is the smallest value of n.

It suffices to prove the claim. We argue via a series of lemmas. We introduce the notation of S(a, b) =∑b−1
k=a(−1)νp(k!). Note that n is p-good if and only if S(0, n+ 1) ≤ 0.

Lemma 1. If n ≤ p2, S(0, n) is the distance to the nearest even multiple of p.

Proof. This follows straightforwardly from the fact that νp(k!) = ⌊k/p⌋ for n ≤ p2.

Lemma 2. If a and b are positive integers so that b ≤ pνp(a), then S(a, a+ b) = (−1)νp(a!)S(0, b).

Proof. Note that for 0 < k < b, νp(a+ k) = νp(k), so it follows that νp((a+ k)!) = νp(a!)+ νp(k!). The
result follows.

Lemma 3. For any nonnegative integer a, νp((ap
2)!) is the same parity as νp(a!).

Proof. Note that νp((ap
2)!)− νp(a!) = ap+ a = a(p+ 1), which is even as p is odd.

Lemma 4. For a nonnegative integer a, S(ap2, (a+ 1)p2) = p(−1)νp(a!).

Proof. Combine Lemmas 1, 2, and 3.

Lemma 5. For a nonnegative integer a, S(0, ap2) = pS(0, a).

Proof. Apply Lemma 4 and sum.

Lemma 6. If a, b are nonnegative integers with b < p2, then S(0, ap2+b) = pS(0, a)+(−1)νp(a!)S(0, b).

Proof. Combine Lemmas 2, 3, and 5.

We are now ready to prove the claim. Call a nonnegative integer neat if it can be written as
∑k

i=0 aip
2i+1

for integers ai with |ai| < p. For a nonnegative integer n, let P (n) be the following statements:

• S(0, n) ≥ 0.

• S(0, n) = 0 if and only if n is neat. In this case, νp(n!) is even.

• S(0, n) = 1 if and only if n + 1 is neat or n − 1 is neat. If n + 1 is neat, then νp(n!) is odd. If
n− 1 is neat, then νp(n!) is even.

It suffices to show P (n) for all n, which we will prove by induction on n. The base case of n = 0 is
obvious.

Now take some n > 0 and suppose n = ap2 + b for 0 ≤ b < p2. Lemma 6 tells us that S(0, n) =
pS(0, a) + (−1)νp(a)S(0, b). Since 0 ≤ S(0, b) ≤ p (by Lemma 1), the only way for S(0, n) to be less
than 0 is if S(0, a) = 0 and (−1)νp(a) = −1, which is impossible since P (a) holds.

There are two ways for S(0, n) = 0 to be true. The first case is that S(0, a) = S(0, b) = 0, which
implies by P (a) and Lemma 1 that a is neat and b is a multiple of 2p. This captures the neat numbers
with a0 ≥ 0. Note that in this case νp(n!) = νp((ap

2)!)+ νp(b!) (by the same logic as Lemma 2), which
is even as νp((ap

2)!) is even by P (a) and Lemma 3 and νp(b!) = b/p which is even.

The second way for S(0, n) to be 0 is if S(0, a) = 1, S(0, b) = p, and (−1)νp(a!) = −1. By the inductive
hypothesis, this is equivalent to a + 1 being neat and b being an odd multiple of p. This captures
exactly the neat numbers with a0 < 0. Also, νp(n!) = νp((ap

2)!) + νp(b!), which is even as νp(a!) is
odd and νp(b!) is odd.

Analyzing the possibilities where S(0, n) = 1 is almost exactly the same as the above, so we will omit
it here. We encourage the reader to fill in the details.


