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Geometry Round

1. Let ABC be a triangle with ∠A = 60◦. Line ℓ intersects segments AB and AC and splits triangle
ABC into an equilateral triangle and a quadrilateral. Let X and Y be on ℓ such that lines BX and
CY are perpendicular to ℓ. Given that AB = 20 and AC = 22, compute XY .

Proposed by: Akash Das

Answer: 21

Solution: Let the intersection points of ℓ with AB and AC be B′ and C ′. Note that AB′ + AC ′ =
2B′C ′, BB′ = 2XB′, and CC ′ = 2Y C ′. Adding gives us

AB +AC = AB′ +AC ′ +BB′ + CC ′ = 2(B′C ′ +XB′ + Y C ′) = 2XY.

Thus, XY = 20+22
2 = 21.

2. Rectangle R0 has sides of lengths 3 and 4. Rectangles R1, R2, and R3 are formed such that:

• all four rectangles share a common vertex P ,

• for each n = 1, 2, 3, one side of Rn is a diagonal of Rn−1,

• for each n = 1, 2, 3, the opposite side of Rn passes through a vertex of Rn−1 such that the center
of Rn is located counterclockwise of the center of Rn−1 with respect to P .
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Compute the total area covered by the union of the four rectangles.

Proposed by: Grace Tian

Answer: 30

Solution: Let ABCD be R0 such that AB = 3 and BC = 4. Then, let AC be a side length of R1 and
let the other two vertices be E and F such that B lies on segment EF . Notice that the area of △ABC
is both half of the area of R0 and half of the area of R1. This means forming R1 adds half of the area
of R0 to the union of rectangles. Similarly, forming R2 adds half of the area of R1 to the union of all
rectangles, and the same for R3. This means the total area of the union of rectangles is given by
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(3 · 4) = 30.

Note that in the above equation, [X] denotes the area of shape X.

3. Let ABCD and AEFG be unit squares such that the area of their intersection is 20
21 . Given that

∠BAE < 45◦, tan∠BAE can be expressed as a
b for relatively prime positive integers a and b. Compute

100a+ b.



Proposed by: Benjamin Shimabukuro

Answer: 4940

Solution: Suppose the two squares intersect at a point X ̸= A. If S is the region formed by the
intersection of the squares, note that line AX splits S into two congruent pieces of area 10

21 . Each of
these pieces is a right triangle with one leg of length 1, so the other leg must have length 20

21 . Thus,
if the two squares are displaced by an angle of θ, then 90 − θ = 2arctan 20

21 . Though there is some
ambiguity in how the points are labeled, the fact that ∠BAF < 45◦ tells us that ∠BAF = θ. Therefore

tan∠BAF =
1

tan(2 arctan 20
21 )

=
1− 202

212

2 · 20
21

=
41

840
.

4. Parallel lines ℓ1, ℓ2, ℓ3, ℓ4 are evenly spaced in the plane, in that order. Square ABCD has the property
that A lies on ℓ1 and C lies on ℓ4. Let P be a uniformly random point in the interior of ABCD and
let Q be a uniformly random point on the perimeter of ABCD. Given that the probability that P lies
between ℓ2 and ℓ3 is 53

100 , the probability that Q lies between ℓ2 and ℓ3 can be expressed as a
b , where

a and b are relatively prime positive integers. Compute 100a+ b.

Proposed by: Daniel Zhu

Answer: 6100

Solution: The first thing to note is that the area of ABCD does not matter in this problem, so for
the sake of convenience, introduce coordinates so that A = (0, 0), B = (1, 0), and C = (0, 1).

Suppose A and B lie on the same side of ℓ2. Then, by symmetry, C andD lie on the same side of ℓ3. Now
suppose BC intersects ℓ2 and ℓ3 at X and Y , respectively, and that DA intersects ℓ2 and ℓ3 at U and V ,
respectively. Note that XY V U is a parallelogram. Since BC = BX+XY +Y C = BX+2XY > 2XY,
we have that XY is less than half the side length of the square, so the area of XY V U is at most half
of the area of square ABCD. However, since 0.53 > 1

2 , this can’t happen. Similar reasoning applies if
B and C lie on the same side of ℓ3. Therefore, points B and D lie between ℓ2 and ℓ3.

Let AB and AD intersect ℓ2 at points M and N , respectively. Let r = AM and s = AN . By symmetry,
[AMN ] = 0.235, so rs = 0.47. Additionally, in coordinates line ℓ2 is just x

r + y
s = 1. Therefore line ℓ4

is given by x
r + y

s = 3. Since C = (1, 1) lies on this line, 1
r + 1

s = 3.

The answer that we want is

1− 2r + 2s

4
= 1− r + s

2
.

On the other hand, the condition 1
r +

1
s = 3 rearranges to 3rs = r+s, so r+s = 1.41. Thus the answer

is 1− 1.41
2 = 0.295 = 59

200 .

5. Let triangle ABC be such that AB = AC = 22 and BC = 11. Point D is chosen in the interior of the
triangle such that AD = 19 and ∠ABD + ∠ACD = 90◦. The value of BD2 + CD2 can be expressed
as a

b , where a and b are relatively prime positive integers. Compute 100a+ b.

Proposed by: Akash Das

Answer: 36104

Solution: Rotate triangle ABD about A so that B coincides with C. Let D map to D′ under this.
Note that CDD′ is a right triangle with right angle at C. Also, note that ADD′ is similar to ABC.
Thus, we have DD′ = AD

2 = 19
2 . Finally, note that

BD2 + CD2 = CD′2 + CD2 = DD′2 =
361

4
.



6. Let ABCD be a rectangle inscribed in circle Γ, and let P be a point on minor arc AB of Γ. Suppose
that PA · PB = 2, PC · PD = 18, and PB · PC = 9. The area of rectangle ABCD can be expressed

as a
√
b

c , where a and c are relatively prime positive integers and b is a squarefree positive integer.
Compute 100a+ 10b+ c.

Proposed by: Ankit Bisain

Answer: 21055

Solution: We have

PD · PA =
(PA · PB)(PD · PC)

(PB · PC)
=

2 · 18
9

= 4.

Let α = ∠DPC = 180◦ −∠APB and β = ∠APD = ∠BPC. Note that α+ β = 90◦. We have, letting
x = AB = CD and y = AD = BC,

2[PAD] + 2[PBC] = y(d(P,AD) + d(P,BC)) = y · x = [ABCD].

Here d(X, ℓ) is used to denote the distance from X to line ℓ. By the trig area formula, the left-hand
side is

PA · PD · sinβ + PB · PC · sinβ = 13 sinβ.

Similarly, we have [ABCD] = 16 sinα. Thus, letting K = [ABCD],

1 = sin2 α+ sin2 β =
K2

132
+

K2

162
=

425

132 · 162
K2

giving K = 208√
425

= 208
√
17

85 .

7. Point P is located inside a square ABCD of side length 10. Let O1, O2, O3, O4 be the circumcenters
of PAB, PBC, PCD, and PDA, respectively. Given that PA+PB+PC+PD = 23

√
2 and the area

of O1O2O3O4 is 50, the second largest of the lengths O1O2, O2O3, O3O4, O4O1 can be written as
√

a
b ,

where a and b are relatively prime positive integers. Compute 100a+ b.

Proposed by: Daniel Zhu

Answer: 16902

Solution: Note that O1O3 and O2O4 are perpendicular and intersect at O, the center of square ABCD.
Also note that O1O2, O2O3, O3O4, O4O1 are the perpendiculars of PB,PC, PD,PA, respectively. Let
d1 = OO1, d2 = OO2, d3 = OO3, and d4 = OO4. Note that that since the area of O1O2O3O4 = 50,
we have that (d1 + d3)(d2 + d4) = 100. Also note that the area of octagon AO1BO2CO3DO4 is twice
the area of O1O2O3O4, which is the same as the area of ABCD. Note that the difference between the
area of this octagon and ABCD is 1

2 ·10[(d1−5)+(d2−5)+(d3−5)+(d4−5)]. Since this must equal
0, we have d1 + d2 + d3 + d4 = 20. Combining this with the fact that (d1 + d3)(d2 + d4) = 100 gives us
d1 + d3 = d2 + d4 = 10, so O1O3 = O2O4 = 10. Note that if we translate AB by 10 to coincide with
DC, then O1 would coincide with O3, and thus if P translates to P ′, then PCP ′D is cyclic. In other
words, we have ∠APB and ∠CPD are supplementary.

Fix any α ∈ (0◦, 180◦). There are at most two points P in ABCD such that ∠APB = α and
∠CPD = 180◦ − α (two circular arcs intersect at most twice). Let P ′ denote the unique point on AC
such that ∠AP ′B = α, and let P ∗ denote the unique point on BD such that ∠AP ∗B = α. Note that
it is not hard to see that in we have ∠CP ′D = ∠CP ∗D = 180◦−α. Thus, we have P = P ′ or P = P ∗,
so P must lie on one of the diagonals. Without loss of generality, assume P = P ′ (P is on AC).
Note that O1O2O3O4 is an isosceles trapezoid with bases O1O4 and O2O3. Additionally, the height of
the trapezoid is AC

2 = 5
√
2. Since the area of trapezoid is O1O2O3O4, we have the midlength of the



trapezoid is 50
5
√
2
= 5

√
2. Additionally, note that ∠PO1B = 2∠PAB = 90◦. Similarly ∠PO2B = 90◦.

Combining this with the fact that O1O2 perpendicular bisects PB, we get that PO1BO2 is a square,

so O1O2 = PB = 23
√
2−10

√
2

2 = 13
√
2

2 =
√

169
2 . Since this is the second largest side of O1O2O3O4, we

are done.

8. Let E be an ellipse with foci A and B. Suppose there exists a parabola P such that

• P passes through A and B,

• the focus F of P lies on E ,
• the orthocenter H of △FAB lies on the directrix of P.

If the major and minor axes of E have lengths 50 and 14, respectively, compute AH2 +BH2.

Proposed by: Jeffrey Lu

Answer: 2402

Solution: Let D and E be the projections of A and B onto the directrix of P, respectively. Also, let
ωA be the circle centered at A with radius AD = AF , and define ωB similarly.

If M is the midpoint of DE, then M lies on the radical axis of ωA and ωB since MD2 = ME2. Since F
lies on both ωA and ωB , it follows that MF is the radical axis of the two circles. Moreover, MF ⊥ AB,
so we must have M = H.

LetN be the midpoint of AB. We compute that AD+BE = AF+FB = 50, soHN = 1
2 (AD +BE) =

25. Since AB = 2
√
252 − 72 = 48, we have

252 = HN2 = 1
2

(
AH2 +BH2

)
− 1

4AB2

= 1
2

(
AH2 +BH2

)
− 242.

by the median lengtb formula. Thus AH2 +BH2 = 2(252 + 242) = 2402.

9. Let A1B1C1, A2B2C2, and A3B3C3 be three triangles in the plane. For 1 ≤ i ≤ 3, let Di, Ei, and
Fi be the midpoints of BiCi, AiCi, and AiBi, respectively. Furthermore, for 1 ≤ i ≤ 3 let Gi be the
centroid of AiBiCi.

Suppose that the areas of the triangles A1A2A3, B1B2B3, C1C2C3, D1D2D3, E1E2E3, and F1F2F3

are 2, 3, 4, 20, 21, and 2020, respectively. Compute the largest possible area of G1G2G3.

Proposed by: Daniel Zhu

Answer: 917

Solution: Let Pi(x, y, z) be the point with barycentric coordinates (x, y, z) in triangle AiBiCi. Note
that since this is linear in x,y, and z, the signed area of triangle P1(x, y, z)P2(x, y, z)P3(x, y, z) is a
homogenous quadratic polynomial in x, y, and z; call it f(x, y, z).

We now claim that

f( 13 ,
1
3 ,

1
3 ) =

4f( 12 ,
1
2 , 0) + 4f( 12 , 0,

1
2 ) + 4f(0, 1

2 ,
1
2 )− f(1, 0, 0)− f(0, 1, 0)− f(0, 0, 1)

9
.

This is easy to verify for f ∈ {x2, y2, z2, xy, xz, yz}, after which the statement follows for general f by
linearity. Then, assuming that we can arbitrarily choose the signs of the areas, the area is maximized
at

4 · 2061 + 9

9
= 229 · 4 + 1 = 917.

Now it remains to show that this best-case scenario is actually possible. The first step is to first show
that these values from an actual f , i.e. that one can fit a homogenous quadratic polynomial through



every six possible values for f at the six given points. One way to see this is to note that by choosing
the coefficients for x2, y2, and z2, the values at the vertices of the triangle can be matched, while
adding any of the xy, xz, and yz terms influences only one of the midpoints, so they can be matched
as well.

Now we show that this particular f can be realized by a choice of triangles. To do this, note that
by continuity there must exist x0, y0, and z0 with f(x0, y0, z0) = 0, since f(1, 0, 0) and f( 12 ,

1
2 , 0)

are different signs, and introduce the new coordinates u = x − x0 and v = y − y0; then f can be
written as au2 + buv + cv2 + du + ev. Now, one can let P1(u, v) = (0, 0), P2(u, v) = (u, v), and
P3(u, v) = (−cv − e, au+ bv + d). This can be shown to reproduce the desired f .

Finally, to address the condition that the original triangles must be nondegenerate, we can perturb
each of the Pi by a constant, which doesn’t affect f as areas are translation-invariant. This concludes
the proof.

10. Suppose ω is a circle centered at O with radius 8. Let AC and BD be perpendicular chords of ω. Let
P be a point inside quadrilateral ABCD such that the circumcircles of triangles ABP and CDP are
tangent, and the circumcircles of triangles ADP and BCP are tangent. If AC = 2

√
61 and BD = 6

√
7,

then OP can be expressed as
√
a−

√
b for positive integers a and b. Compute 100a+ b.

Proposed by: Daniel Xianzhe Hong

Answer: 103360

Solution: Let X = AC ∩BD, Q = AB ∩CD and R = BC ∩AD. Since QA ·QB = QC ·QD, Q is on
the radical axis of (ABP ) and (CDP ), so Q lies on the common tangent at P . Thus, QP 2 = QA ·QB.
Similarly, RA · RC = RP 2. Let M be the Miquel point of quadrilateral ABCD: in particular,
M = OX ∩QR is the foot from O to QR. By properties of the Miquel point, ABMR and ACMQ are
cyclic. Thus,

QP 2 = QA ·QB

RP 2 = RA ·RC

QP 2 +RP 2 = QM ·QR+RM ·RQ = (QR+RM)QR = QR2.

As a result, ∠QPR = 90◦.

Now, let P ′ the inverse of P with respect to ω. Note that by properties of inversion, (ABP ′) and
(CDP ′) are tangent, and (ACP ′) and (BDP ′) are also tangent.

But now,

QP 2 = QP ′2 = QA ·QB

RP 2 = RP ′2 = RA ·RC

QP 2 +RP 2 = QP ′2 +RP ′2 = QR2.

Thus, PQP ′R is a cyclic kite, so P and P ′ are reflections of each other across QR. In particular, since
O,P, P ′ are collinear, then M lies on line OPP ′.

We can now compute OP by using the fact that OP + r2

OP = 2OM = 2r2

OX , where r = 8. Since OX
can be computed to equal 2 quite easily, then OP + 64

OP = 64, or OP 2 − 64OP + 64 = 0. Solving this

yields OP = 32± 8
√
15, and because P is inside the circle, OP = 32− 8

√
15 =

√
1024−

√
960.


