HMMT February 2022
 February 19, 2022
 Team Round

1. [20] Let $\left(a_{1}, a_{2}, \ldots, a_{8}\right)$ be a permutation of $(1,2, \ldots, 8)$. Find, with proof, the maximum possible number of elements of the set

$$
\left\{a_{1}, a_{1}+a_{2}, \ldots, a_{1}+a_{2}+\cdots+a_{8}\right\}
$$

that can be perfect squares.
2. [25] Find, with proof, the maximum positive integer k for which it is possible to color $6 k$ cells of 6×6 grid such that, for any choice of three distinct rows R_{1}, R_{2}, R_{3} and three distinct columns C_{1}, C_{2}, C_{3}, there exists an uncolored cell c and integers $1 \leq i, j \leq 3$ so that c lies in R_{i} and C_{j}.
3. [25] Let triangle $A B C$ be an acute triangle with circumcircle Γ. Let X and Y be the midpoints of minor arcs $\widehat{A B}$ and $\widehat{A C}$ of Γ, respectively. If line $X Y$ is tangent to the incircle of triangle $A B C$ and the radius of Γ is R, find, with proof, the value of $X Y$ in terms of R.
4. [30] Suppose $n \geq 3$ is a positive integer. Let $a_{1}<a_{2}<\cdots<a_{n}$ be an increasing sequence of positive real numbers, and let $a_{n+1}=a_{1}$. Prove that

$$
\sum_{k=1}^{n} \frac{a_{k}}{a_{k+1}}>\sum_{k=1}^{n} \frac{a_{k+1}}{a_{k}} .
$$

5. [40] Let $A B C$ be a triangle with centroid G, and let E and F be points on side $B C$ such that $B E=E F=F C$. Points X and Y lie on lines $A B$ and $A C$, respectively, so that X, Y, and G are not collinear. If the line through E parallel to $X G$ and the line through F parallel to $Y G$ intersect at $P \neq G$, prove that $G P$ passes through the midpoint of $X Y$.
6. [45] Let $P(x)=x^{4}+a x^{3}+b x^{2}+x$ be a polynomial with four distinct roots that lie on a circle in the complex plane. Prove that $a b \neq 9$.
7. [50] Find, with proof, all functions $f: \mathbb{R} \backslash\{0\} \rightarrow \mathbb{R}$ such that

$$
f(x)^{2}-f(y) f(z)=x(x+y+z)(f(x)+f(y)+f(z))
$$

for all real x, y, z such that $x y z=1$.
8. [50] Let $P_{1} P_{2} \cdots P_{n}$ be a regular n-gon in the plane and a_{1}, \ldots, a_{n} be nonnegative integers. It is possible to draw m circles so that for each $1 \leq i \leq n$, there are exactly a_{i} circles that contain P_{i} on their interior. Find, with proof, the minimum possible value of m in terms of the a_{i}.
9. [55] Let Γ_{1} and Γ_{2} be two circles externally tangent to each other at N that are both internally tangent to Γ at points U and V, respectively. A common external tangent of Γ_{1} and Γ_{2} is tangent to Γ_{1} and Γ_{2} at P and Q, respectively, and intersects Γ at points X and Y. Let M be the midpoint of the arc $\widehat{X Y}$ that does not contain U and V. Let Z be on Γ such $M Z \perp N Z$, and suppose the circumcircles of $Q V Z$ and $P U Z$ intersect at $T \neq Z$. Find, with proof, the value of $T U+T V$, in terms of R, r_{1}, and r_{2}, the radii of Γ, Γ_{1}, and Γ_{2}, respectively.
10. [60] On a board the following six vectors are written:

$$
(1,0,0), \quad(-1,0,0), \quad(0,1,0), \quad(0,-1,0), \quad(0,0,1), \quad(0,0,-1) .
$$

Given two vectors v and w on the board, a move consists of erasing v and w and replacing them with $\frac{1}{\sqrt{2}}(v+w)$ and $\frac{1}{\sqrt{2}}(v-w)$. After some number of moves, the sum of the six vectors on the board is u. Find, with proof, the maximum possible length of u.

