HMIC 2022

March 31-April 6, 2022

1. [6] Is

$$
\prod_{k=0}^{\infty}\left(1-\frac{1}{2022^{k!}}\right)
$$

rational?
2. [6] Does there exist a regular pentagon whose vertices lie on the edges of a cube?
3. [8] For a nonnegative integer n, let $s(n)$ be the sum of the digits of the binary representation of n. Prove that

$$
\sum_{n=0}^{2^{2022}-1} \frac{(-1)^{s(n)}}{2022+n}>0
$$

4. [10] Call a simple graph G quasicolorable if we can color each edge blue, red, green, or white such that

- for each vertex v of degree 3 in G, the three edges incident to v are either (1) red, green, and blue, or (2) all white,
- not all edges are white.

A simple connected graph G has a vertices of degree $4, b$ vertices of degree 3, and no other vertices, where a and b are positive integers. Find the smallest real number c so that the following statement is true: "If $a / b>c$, then G must be quasicolorable."
5. [12] Let p be a prime and let \mathbb{F}_{p} be the set of integers modulo p. Call a function $f: \mathbb{F}_{p}^{2} \rightarrow$ \mathbb{F}_{p} quasiperiodic if there exist $a, b \in \mathbb{F}_{p}$, not both zero, so that $f(x+a, y+b)=f(x, y)$ for all $x, y \in \mathbb{F}_{p}$. Find the number of functions $\mathbb{F}_{p}^{2} \rightarrow \mathbb{F}_{p}$ that can be written as the sum of some number of quasiperiodic functions.

