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1. Four people are playing rock-paper-scissors. They each play one of the three options (rock, paper, or
scissors) independently at random, with equal probability of each choice. Compute the probability
that someone beats everyone else.
(In rock-paper-scissors, a player that plays rock beats a player that plays scissors, a player that plays
paper beats a player that plays rock, and a player that plays scissors beats a player that plays paper.)
Proposed by: Evan Erickson

Answer: 4
27

Solution: As the four players and three events are symmetric, the probability a particular player
makes a particular move and beats everyone else is the same regardless of the choice of player or move.
So, focusing on one such scenario, the desired probability is 12 times the probability that player 1 plays
rock and beats everyone else.
In this case, player 1 plays rock and all other players must play scissors. All four of these events have
probability 1

3 , so this scenario has probability 1
34 = 1

81 . Thus,

P(one beats all) = 12 · 1

81
=

4

27
.

2. A regular n-gon P1P2 . . . Pn satisfies ∠P1P7P8 = 178◦. Compute n.

Proposed by: Derek Liu
Answer: 630
Solution: Let O be the center of the n-gon. Then

∠P1OP8 = 2(180◦ − ∠P1P7P8) = 4◦ =
360◦

90
,

which means the arc P̂1P8 that spans 7 sides of the n-gon also spans 1/90 of its circumcircle. Thus
n = 7 · 90 = 630.

3. Compute the number of positive four-digit multiples of 11 whose sum of digits (in base ten) is divisible
by 11.
Proposed by: Ankit Bisain, Eric Shen, Pitchayut Saengrungkongka, Sean Li
Answer: 72

Solution: Let an arbitrary such number be abcd. Then, we desire 11 | a+b+c+d and 11 | a−b+c−d,
where the latter comes from the well-known divisibility trick for 11. Sums and differences of multiples
of 11 must also be multiples of 11, so this is equivalent to desiring 11 | a+ c and 11 | b+ d.
As a ∈ [1, 9] and b, c, d ∈ [0, 9], a+ c and b+ d must be either 0 or 11 (no larger multiple is achievable).
There are 8 choices for such (a, c) and 9 choices for such (b, d), so the answer is 8 · 9 = 72.



4. Suppose that a and b are real numbers such that the line y = ax+ b intersects the graph of y = x2 at
two distinct points A and B. If the coordinates of the midpoint of AB are (5, 101), compute a+ b.
Proposed by: Rishabh Das
Answer: 61

Solution 1: Let A = (r, r2) and B = (s, s2). Since r and s are roots of x2 − ax− b with midpoint 5,
r + s = 10 = a (where the last equality follows by Vieta’s formula).
Now, as −rs = b (Vieta’s formula), observe that

202 = r2 + s2 = (r + s)2 − 2rs = 100 + 2b.

This means b = 51, so the answer is 10 + 51 = 61.

Solution 2: As in the previous solution, let A = (r, r2) and B = (s, s2) and note r + s = 10 = a.
Fixing a = 10, the y-coordinate of the midpoint is 50 when b = 0 (and changing b shifts the line up or
down by its value). So, increasing b by 51 will make the midpoint have y-coordinate 50 + 51 = 101, so
the answer is 10 + 51 = 61.

5. On an 8× 8 chessboard, 6 black rooks and k white rooks are placed on different cells so that each rook
only attacks rooks of the opposite color. Compute the maximum possible value of k.
(Two rooks attack each other if they are in the same row or column and no rooks are between them.)
Proposed by: Arul Kolla
Answer: 14

Solution: The answer is k = 14. For a valid construction, place the black rooks on cells (a, a) for
2 ≤ a ≤ 7 and the white rooks on cells (a, a+ 1) and (a+ 1, a) for 1 ≤ a ≤ 7.
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Now, we prove the optimality. As rooks can only attack opposite color rooks, the color of rooks in each
row is alternating. The difference between the number of black and white rooks is thus at most the
number of rooks. Thus, k ≤ 6 + 8 = 14.

6. Let ABCD be a square of side length 5. A circle passing through A is tangent to segment CD at T
and meets AB and AD again at X ̸= A and Y ̸= A, respectively. Given that XY = 6, compute AT .



Proposed by: Maxim Li

Answer:
√
30

Solution:

A
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B
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Let O be the center of the circle, and let Z be the foot from O to AD. Since XY is a diameter,
OT = ZD = 3, so AZ = 2. Then OZ =

√
5 and AT =

√
OZ2 + 25 =

√
30.

7. Compute all ordered triples (x, y, z) of real numbers satisfying the following system of equations:

xy + z = 40

xz + y = 51

x+ y + z = 19.

Proposed by: Ethan Liu, Pitchayut Saengrungkongka

Answer: (12, 3, 4), (6, 5.4, 7.6)

Solution 1: By adding the first two equations, we can get

xy + z + xz + y = (x+ 1)(y + z) = 91.

From the third equation we have

(x+ 1) + (y + z) = 19 + 1 = 20,

so x+1 and y+ z are the two roots of t2− 20t+91 = 0 by Vieta’s theorem. As the quadratic equation
can be decomposed into

(t− 7)(t− 13) = 0,

we know that either x = 6, y + z = 13 or x = 12, y + z = 7.

• If x = 12, by the first equation we have 12y+z = 40, and substituting y+z = 7 we have 11y = 33,
y = 3 and z = 4.

• If x = 6, by the first equation we have 6y+ z = 40, and substituting y+ z = 13 we have 5y = 27,
y = 5.4 and z = 7.6.

Hence, the two solutions are (12, 3, 4) and (6, 5.4, 7.6).



Solution 2: Viewing x as a constant, the equations become three linear equations in two variables y
and z. This system can only have a solution if

det

x 1 40
1 x 51
1 1 19− x

 = 0.

Expanding out the determinant, we have

x2(19− x) + 51 + 40− 51x− 40x− (19− x) = 0

=⇒ x3 − 19x2 + 90x− 72 = 0

=⇒ (x− 1)(x2 − 18x+ 72) = 0

=⇒ (x− 1)(x− 6)(x− 12) = 0

so x = 1, 6, or 12. If x = 1, the system has no solutions, and if x = 6 or 12, we can find y and z as in
the first solution.

8. Mark writes the expression
√
d for each positive divisor d of 8! on the board. Seeing that these

expressions might not be worth points on HMMT, Rishabh simplifies each expression to the form a
√
b,

where a and b are integers such that b is not divisible by the square of a prime number. (For example,√
20,

√
16, and

√
6 simplify to 2

√
5, 4

√
1, and 1

√
6, respectively.) Compute the sum of a+ b across all

expressions that Rishabh writes.
Proposed by: Pitchayut Saengrungkongka
Answer: 3480

Solution: Let
√
n simplify to an

√
bn. Notice that both an and bn are multiplicative. Thus,

∑
d|n ad

and
∑

d|n bd are multiplicative.

We consider the sum
∑

d|pk ad and
∑

d|pk bd. Notice that for d = pl, ad = p⌊l/2⌋ and bd = p2{l/2}, so

∑
d|pk

ad = 2

(
p(k+1)/2 − 1

p− 1

)
and

∑
d|pk

bd =
(p+ 1)(k + 1)

2

for odd k, while

∑
d|pk

ad =

(
p(k+2)/2 + pk/2 − 2

p− 1

)
and

∑
d|pk

bd =
(p+ 1)k

2
+ 1

for even k.
Notice 8! = 27 · 32 · 5 · 7, so∑

d|8!

ad =

(
2(16− 1)

2− 1

)(
9 + 3− 2

3− 1

)
(1 + 1) (1 + 1) = 30 · 5 · 2 · 2 = 600

and ∑
d|8!

bd =

(
3 · 8
2

)(
1 +

4 · 2
2

)
(1 + 5) (1 + 7) = 12 · 5 · 6 · 8 = 2880,

so the sum of ad + bd would be 600 + 2880 = 3480.



9. An entry in a grid is called a saddle point if it is the largest number in its row and the smallest
number in its column. Suppose that each cell in a 3× 3 grid is filled with a real number, each chosen
independently and uniformly at random from the interval [0, 1]. Compute the probability that this
grid has at least one saddle point.
Proposed by: Benjamin Shimabukuro

Answer: 3
10

Solution: With probability 1, all entries of the matrix are unique. If this is the case, we claim there
can only be one saddle point. To see this, suppose Aij and Akl are both saddle points. They cannot
be in the same row, since they cannot both be the greatest number in the same row, and similarly they
cannot be in the same column, since they cannot both be the least number in the same column. If they
are in different rows and different columns, then Aij < Ail and Akl > Ail, so Aij < Akl. However, we
also have Aij > Akj and Akl < Akj , so Aij > Akl. This is a contradiction, so there is only one saddle
point.
Each entry of the matrix is equally likely to be a saddle point by symmetry, so we can just multiply
the probability that A11 is a saddle point by 9 to find the answer. For A11 to be a saddle point, it
must be greater than A21 and A31, but less than A12 and A13. There are 5! = 120 equally likely ways
that the numbers A11, A12, A13, A21, A31 could be arranged in increasing order, and 4 of them work, so
the probability that A11 is a saddle point is 1

30 . Therefore, the probability that A has a saddle point
is 9 · 1

30 = 3
10 .

10. Let ABCD be a convex trapezoid such that ∠ABC = ∠BCD = 90◦, AB = 3, BC = 6, and CD = 12.
Among all points X inside the trapezoid satisfying ∠XBC = ∠XDA, compute the minimum possible
value of CX.
Proposed by: Pitchayut Saengrungkongka

Answer:
√
113−

√
65.

Solution:

C D

B
A

P
O

X

Let P = AD∩BC. Then, the given angle condition ∠XBC = ∠XAD implies that ∠XBD+∠XPD =
180◦, so X always lies on circle ⊙(PBD), which is fixed. Thus, we see that the locus if X is the arc
B̂D of ⊙(PBD). Let O and R be the center and the radius of ⊙(PBD). Then, by triangle inequality,
we get that

CX ≥ CO −OX = CO −R,

and the equality occurs when X is the intersection of segment CO and ⊙(PBD), as shown in the
diagram above. Hence, the maximum value is CO −R.



To compute CO and R, we let T be the second intersection of ⊙(PBD) and CD. We can compute
BP = 2, so by Power of Point, CT ·CD = CP ·CB = 48, so CT = 4, which means that DT = 8. The
projections of O onto CD and CB are midpoints of BP and DT . Let those midpoints be M and N ,
respectively. Then, we get by Pythagorean theorem that

CO =
√

CN2 +ON2 =

√(
4 + 8

2

)2
+
(
6 + 2

2

)2
=

√
82 + 72 =

√
113

R =
√
BM2 +MO2 =

√
12 +

(
4 + 8

2

)2
=

√
12 + 82 =

√
65,

so the answer is
√
113−

√
65.


