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Algebra and Number Theory Round

1. Suppose r, s, and t are nonzero reals such that the polynomial z2 4+ rx + s has s and t as roots, and
the polynomial 22 4 tx + r has 5 as a root. Compute s.

Proposed by: Rishabh Das

Answer:

Solution: The first equation implies st = s, so ¢ = 1. Then 22 + 2 +r has 5 as a root, so r + 30 = 0,
implying r = —30. Finally, 22 — 30z + s has 1 as a root, so s = .

Remark: We missed the case of s = t, so 22 + rz + s has s = t as one root, and 1 as the other root
(by Vieta’s). This means r = —s — 1. Then

rtrtr=2+sr—(s+1)=(z+(s+1)(x—1)

has 5 as a root, so s = —6 is another solution. During the competition, both the answers —6 and 29
(as well as “29 or —6”) were accepted.

2. Suppose a and b are positive integers. Isabella and Vidur both fill up an a x b table. Isabella fills it
up with numbers 1,2, ..., ab, putting the numbers 1,2,...,b in the first row, b+ 1,b+ 2,...,2b in the
second row, and so on. Vidur fills it up like a multiplication table, putting ¢j in the cell in row ¢ and
column j. (Examples are shown for a 3 x 4 table below.)

1({2(3]4 11213
51678 21416
9110|1112 316[9](12
Isabella’s Grid Vidur’s Grid

Isabella sums up the numbers in her grid, and Vidur sums up the numbers in his grid; the difference
between these two quantities is 1200. Compute a + b.

Proposed by: Rishabh Das

Answer:
Solution: Using the formula 1 +2+4---4+n = %, we get

ablab+1) ala+1) b(b+1) ab(2(ab+1)—(a+1)(b+1))

2 2 2 4
_ab(ab—a—b+1)
B 4
_abla—1)(b—1)
N 4
_ala—1) bb—1)
2 2

This means we can write the desired equation as
ala —1)-b(b—1) = 4800.

Assume b < a, so we know b(b— 1) < a(a—1), so b(b—1) < 70. Thus, b < 8.
If b="7or b =38, then b(b— 1) has a factor of 7, which 4800 does not, so b < 6.



If b =6 then b(b— 1) = 30, so a(a — 1) = 160, which can be seen to have no solutions.
If b = 5 then b(b — 1) = 20, so a(a — 1) = 240, which has the solution a = 16, giving 5 + 16 =[21]

We need not continue since we are guaranteed only one solution, but we check the remaining cases
for completeness. If b = 4 then a(a — 1) = 2890 = 400, which has no solutions. If b = 3 then
a(a—1) = 4890 = 800 which has no solutions. Finally, if b = 2 then a(a — 1) = %820 = 2400, which has

no solutions.
The factorization of the left side may come as a surprise; here’s a way to see it should factor without

doing the algebra. If either a = 1 or b = 1, then the left side simplifies to 0. As a result, both a — 1
and b — 1 should be a factor of the left side.

. Compute the sum of all two-digit positive integers x such that for all three-digit (base 10) positive
integers abe, if abc is a multiple of z, then the three-digit (base 10) number bca is also a multiple of
T.

Proposed by: Karthik Venkata Vedula

Answer:

Solution: Note that abcO — bca = a(10* — 1) must also be a multiple of . Choosing a = 1 means that
x divides 10® — 1, and this is clearly a necessary and sufficient condition. The only two-digit factors of
103 — 1 are 27 and 37, so our answer is 27 + 37 = [ 64].

. Let f(x) be a quotient of two quadratic polynomials. Given that f(n) = n® for all n € {1,2,3,4,5},
compute f(0).

Proposed by: Pitchayut Saengrungkongka

24

Answer: =

Solution: Let f(z) = p(x)/q(z). Then, z3¢(x) — p(z) has 1,2, 3,4,5 as roots. Therefore, WLOG, let
23q(z) — p(x) = (x — 1)(x — 2)(z — 3)(x — 4)(x — 5) = 2° — 152" + 852° — ...

Thus, q(z) = 22—152+85, so ¢(0) = 85. Plugging x = 0 in the above equation also gives —p(0) = —120.

swer jg 120 _ [ 24
Hence, the answer is o = |7 |

Remark. From the solution above, it is not hard to see that the unique f that satisfies the problem is

22527 — 274z + 120
T 22 -152+85

f(z)

. Compute the unique ordered pair (z,y) of real numbers satisfying the system of equations

1 1
L _2_7 and y 'y

—_— —+

Proposed by: Pitchayut Saengrungkongka

13 13

Answer: (—%, 4—0)

Solution 1: Consider vectors
VETRY L (Ve
Y/ +y? y )°



They are orthogonal and add up to <Z), which have length /72 + 42 = 1/65. The first vector has
length 1, so by Pythagorean’s theorem, the second vector has length /65 — 1 = 8, so we have

1
=64 = /22 + y? = £8xy.

1
2 g

However, the first equation indicates that x < 0, while the second equation indicates that y > 0, so
zy < 0. Thus, /22 + y2 = —8xy. Plugging this into both of the starting equations give

1 1 1 1
—— ——=T7and — — + - =4.
8y = 8 vy
Solving this gives (z,y) = (—%, %) , which works.

Solution 2: Let x = rcosf and y = rsinf. Then our equations read

1
0— —
€08 rcosf
0 _
S+ rsinf

Multiplying the first equation by cos @ and the second by sin #, and then adding the two gives 7 cos 6 +
4sin @ = 1. This means

4sinf =1—"Tcosf = 16sin?60 =1 —14cos0 +49cos’ = 65cos’ 6 — 14cosf — 15 = 0.

This factors as (13cosf + 5)(5cosf — 3) = 0, so cos 8 is either 2 or —-. This means either cos = 2

i — _4 — _5 i — 12
and sinf = —%, or cos) = — 35 and sinf = {3.
The first case, plugging back in, makes r a negative number, a contradiction, so we take the second
_ 1 _ _13 _ 1 _13 - _[(_1 13
case. Then x = 45— = —gz and y = ;——5 = ;5. The answer is (z,y) = ( 56 40) )

. Compute the sum of all positive integers n such that 50 < n < 100 and 2n + 3 does not divide 2™ — 1.
Proposed by: Pitchayut Saengrungkongka

Answer: | 222

Solution: We claim that if n > 10, then 2n +3 1 2"' — 1 if and only if both n+ 1 and 2n + 3 are prime.

If both n + 1 and 2n + 3 are prime, then assume 2n + 3 | 2" — 1. By Fermat Little Theorem,
2n + 3 | 2272 4+ 1. However, since n + 1 is prime, ged(2n +2,n!) = 2,50 2n +3 [ 22 -1 =3, a
contradiction.

If 2n 4 3 is composite, then ¢(2n + 3) is even and is at most 2n, so ¢(2n + 3) | n!, done.
If n + 1 is composite but 2n + 3 is prime, then 2n 4+ 2 | n!, so 2n +3 | 2™ — 1.

The prime numbers between 50 and 100 are 53,59,61,67,71,73,79,83,89,97. If one of these is n + 1,
then the only numbers that make 2n + 3 prime are 53,83, and 89, making n one of 52, 82, and 88.
These sum to .

. Let P(n) = (n—13)(n —23)...(n — 403) for positive integers n. Suppose that d is the largest positive
integer that divides P(n) for every integer n > 2023. If d is a product of m (not necessarily distinct)
prime numbers, compute m.

Proposed by: Nithid Anchaleenukoon

Answer:



Solution: We first investigate what primes divide d. Notice that a prime p divides P(n) for all
n > 2024 if and only if {13,23 ... 403} contains all residues in modulo p. Hence, p < 40. Moreover,
2% = 1 must not have other solution in modulo p than 1, so p # 1 (mod 3). Thus, the set of prime
divisors of d is S = {2,3,5,11,17,23,29}.

Next, the main claim is that for all prime p € S, the minimum value of v,(P(n)) across all n > 2024

is {%OJ. To see why, note the following:

e Lower Bound. Note that for all n € Z, one can group n — 13, n — 23, ..., n — 402 into {%OJ

contiguous blocks of size p. Since p Z 1 (mod 3), 2 span through all residues modulo p, so each
block will have one number divisible by p. Hence, among n — 13, n — 23, ..., n — 403, at least

{%OJ are divisible by p, implying that v,(P(n)) > {%OJ.

e Upper Bound. We pick any n such that v,(n) = 1 so that only terms in form n — p3, n — (2p)3,
. are divisible by p. Note that these terms are not divisible by p? either, so in this case, we

have v,(P(n)) = {%J.

Hence, v,(d) = L%J for all prime p € S. Thus, the answer is

- ) [l () L)+ () -

. Let ( = cos 21—7; + 4 sin %r Suppose a > b > ¢ > d are positive integers satisfying
G+ ¢+ ¢+ = V3,

Compute the smallest possible value of 1000a 4+ 100b 4+ 10c + d.
Proposed by: Rishabh Das

Answer:

Solution: We may as well take d = 1 and shift the other variables down by d to get |C“/ +Cb/ —i—(cl +1| =
v/3. Multiplying by its conjugate gives

€+ ¢+ ¢ H )+ 1) =3

Expanding, we get

1+ ) V=0,

z,Y€S, Y
where S = {a’,V/,/,0}.

This is the sum of 13 terms, which hints that S — S should form a complete residue class mod 13. We
can prove this with the fact that the minimal polynomial of ¢ is 1 4+ x + 22 + - - + z!'2.

The minimum possible value of a’ is 6, as otherwise every difference would be between —5 and 5 mod
13. Take a’ = 6. If b’ < 2 then we couldn’t form a difference of 3 in S, so b’ > 3. Moreover, 6—3 = 3—0,
s03 & S, s0b =4 is the best possible. Then ¢’ = 1 works.

Ifa =6, =4,and ¢ =1,thena=7,b=05, c=2, and d = 1, so the answer is | 7521 |



9. Suppose a, b, and ¢ are complex numbers satisfying
a?=b—c,
b2 =c¢—a, and
2 =a—h.

Compute all possible values of a + b+ c.
Proposed by: Rishabh Das

Answer:

Solution: Summing the equations gives a® + b + ¢? = 0 and summing @ times the first equation and
ete. gives a® + b3 +¢3 =0. Let a+ b+ c=k. Then a? + b2 + ¢? = 0 means ab + bc + ca = k?/2, and

A+ 4+ =0 = —3abc=a®+b*+c*—3abc = (a+b+c)(a® +b*+c? —ab—bc —ca) = —k3/2,
so abc = k3 /6.
This means a, b, and ¢ are roots of the cubic
2 — ka? + (k*/2)z — (K*/6) = 0
for some k.

Next, note that

at +b' + ¢t =) a(ka® — (K*/2)a+ (k*/6))
= k(ka® — (k*/2)a + (k*/6)) — (k*/2)a® + (kK /6)a

cyc

=Y (K/2)a® — (k*/3)a+ (k*/6)

cyc
= —k'/3+ k)2
=k/6.

After this, there are two ways to extract the values of k.

e Summing squares of each equation gives

al + bt 4t = Z(a—b)2 =2(a® +b* + c*) — 2(ab + bc + ca) = —k?,

cyc
SO
k‘4
z=—1~c2 — k=|0,+iV6|.
e Summing a? times the first equation, etc. gives
k‘6
4, 34, A 2 272 2
b = b—c)=—(a—0b)(b— —a)=—abc = ——
a*+b*+¢ Za( c) (a=b)(b—c)(c—a) a*bc 36’

cyc

SO

k4 k6
= — k=|0,+iV6|

We can achieve k = 0 with a = b = ¢ = 0. Letting a, b, and ¢ be the roots of 2° — (iv/6)2? — 3z + (i/6)
will force one of a? = b — ¢ and all other equalities or a®> — ¢ — b and all other equalities to hold, if the
latter happens, swap b and c. Finally, for these (a,b, c), take (—a, —c, —b) to get —iy/6. Thus, all of
these are achievable.



10. A polynomial f € Z[z] is called splitty if and only if for every prime p, there exist polynomials
9ps hp € Z[z] with deg g,,degh, < deg f and all coefficients of f — g,h, are divisible by p. Compute
the sum of all positive integers n < 100 such that the polynomial 2* + 1622 4 n is splitty.

Proposed by: Pitchayut Saengrungkongka
Answer: | 693

Solution: We claim that * 4+ az? + b is splitty if and only if either b or a? — 4b is a perfect square.

(The latter means that the polynomial splits into (z? — r)(2? — s)).

Assuming the characterization, one can easily extract the answer. For a = 16 and b = n, one of
n and 64 — n has to be a perfect square. The solutions to this that are at most 64 form 8 pairs
that sum to 64 (if we include 0), and then we additionally have 81 and 100. This means the sum is

64 -8+ 81+ 100 =[693 ]

Now, we move on to prove the characterization.
Necessity.

Take a prime p such that neither a® — 4b nor b is a quadratic residue modulo p (exists by Dirichlet +
CRT + QR). Work in F,,. Now, suppose that

zt +ax® + b= (22 + ma 4+ n)(z? + sz + 1).

Then, looking at the z3-coefficient gives m + s = 0 or s = —m. Looking at the z-coefficient gives
m(n —t) =0.

e If m = 0, then s = 0, so 2 +ax?+b = (2%+n)(2?+t), which means a?—4b = (n+t)?—4nt = (n—t)?,
a quadratic residue modulo p, contradiction.
e If n =t, then b = nt is a square modulo p, a contradiction. (The major surprise of this problem
is that this suffices, which will be shown below.)
Sufficiency.

Clearly, the polynomial splits in p = 2 because in Fa[z], we have 2 + az? + b = (22 + ax + b)%. Now,
assume p is odd.

If a® — 4b is a perfect square, then x* + ax? + b splits into (2 — 7)(z? — s) even in Z[x].
If b is a perfect square, then let b = k2. We then note that

o 2% + ax? + b splits in form (22 — r)(2? — 5) if (“2;%4]“2) =1

o 2% + ax? + b splits in form (22 + rz + k)(2? —rz + k) if a = 2k — 72, or (%Tfa) =

o z' + ax? + b splits in form (2% + ro — k)(2? —rz — k) if a = -2k —r?, or (ﬁ) =1.

Since (2k — a)(—2k — a) = a® — 4k?, it follows that at least one of these must happen.



