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Algebra and Number Theory Round

1. Suppose r, s, and t are nonzero reals such that the polynomial x2 + rx + s has s and t as roots, and
the polynomial x2 + tx+ r has 5 as a root. Compute s.

Proposed by: Rishabh Das

Answer: 29

Solution: The first equation implies st = s, so t = 1. Then x2 + x+ r has 5 as a root, so r + 30 = 0,
implying r = −30. Finally, x2 − 30x+ s has 1 as a root, so s = 29 .

Remark: We missed the case of s = t, so x2 + rx + s has s = t as one root, and 1 as the other root
(by Vieta’s). This means r = −s− 1. Then

x2 + tx+ r = x2 + sx− (s+ 1) = (x+ (s+ 1))(x− 1)

has 5 as a root, so s = −6 is another solution. During the competition, both the answers −6 and 29
(as well as “29 or −6”) were accepted.

2. Suppose a and b are positive integers. Isabella and Vidur both fill up an a × b table. Isabella fills it
up with numbers 1, 2, . . . , ab, putting the numbers 1, 2, . . . , b in the first row, b+ 1, b+ 2, . . . , 2b in the
second row, and so on. Vidur fills it up like a multiplication table, putting ij in the cell in row i and
column j. (Examples are shown for a 3× 4 table below.)

1 1

5 2

9 3

2 2

6 4

10 6

3 3

7 6

11 9

4 4

8 8

12 12

Isabella’s Grid Vidur’s Grid

Isabella sums up the numbers in her grid, and Vidur sums up the numbers in his grid; the difference
between these two quantities is 1200. Compute a+ b.

Proposed by: Rishabh Das

Answer: 21

Solution: Using the formula 1 + 2 + · · ·+ n = n(n+1)
2 , we get

ab(ab+ 1)

2
− a(a+ 1)

2
· b(b+ 1)

2
=
ab (2(ab+ 1)− (a+ 1)(b+ 1))

4

=
ab(ab− a− b+ 1)

4

=
ab(a− 1)(b− 1)

4

=
a(a− 1)

2
· b(b− 1)

2
.

This means we can write the desired equation as

a(a− 1) · b(b− 1) = 4800.

Assume b ≤ a, so we know b(b− 1) ≤ a(a− 1), so b(b− 1) < 70. Thus, b ≤ 8.

If b = 7 or b = 8, then b(b− 1) has a factor of 7, which 4800 does not, so b ≤ 6.



If b = 6 then b(b− 1) = 30, so a(a− 1) = 160, which can be seen to have no solutions.

If b = 5 then b(b− 1) = 20, so a(a− 1) = 240, which has the solution a = 16, giving 5 + 16 = 21 .

We need not continue since we are guaranteed only one solution, but we check the remaining cases
for completeness. If b = 4 then a(a − 1) = 4800

12 = 400, which has no solutions. If b = 3 then
a(a− 1) = 4800

6 = 800 which has no solutions. Finally, if b = 2 then a(a− 1) = 4800
2 = 2400, which has

no solutions.

The factorization of the left side may come as a surprise; here’s a way to see it should factor without
doing the algebra. If either a = 1 or b = 1, then the left side simplifies to 0. As a result, both a − 1
and b− 1 should be a factor of the left side.

3. Compute the sum of all two-digit positive integers x such that for all three-digit (base 10) positive
integers a b c, if a b c is a multiple of x, then the three-digit (base 10) number b c a is also a multiple of
x.

Proposed by: Karthik Venkata Vedula

Answer: 64

Solution: Note that abc0− bca = a(104− 1) must also be a multiple of x. Choosing a = 1 means that
x divides 103− 1, and this is clearly a necessary and sufficient condition. The only two-digit factors of
103 − 1 are 27 and 37, so our answer is 27 + 37 = 64 .

4. Let f(x) be a quotient of two quadratic polynomials. Given that f(n) = n3 for all n ∈ {1, 2, 3, 4, 5},
compute f(0).

Proposed by: Pitchayut Saengrungkongka

Answer: 24
17

Solution: Let f(x) = p(x)/q(x). Then, x3q(x)− p(x) has 1, 2, 3, 4, 5 as roots. Therefore, WLOG, let

x3q(x)− p(x) = (x− 1)(x− 2)(x− 3)(x− 4)(x− 5) = x5 − 15x4 + 85x3 − . . .

Thus, q(x) = x2−15x+85, so q(0) = 85. Plugging x = 0 in the above equation also gives −p(0) = −120.

Hence, the answer is 120
85 = 24

17 .

Remark. From the solution above, it is not hard to see that the unique f that satisfies the problem is

f(x) =
225x2 − 274x+ 120

x2 − 15x+ 85
.

5. Compute the unique ordered pair (x, y) of real numbers satisfying the system of equations

x√
x2 + y2

− 1

x
= 7 and

y√
x2 + y2

+
1

y
= 4.

Proposed by: Pitchayut Saengrungkongka

Answer:
(
− 13

96 ,
13
40

)
Solution 1: Consider vectors (

x/
√
x2 + y2

y/
√
x2 + y2

)
and

(
−1/x
1/y

)
.



They are orthogonal and add up to

(
7
4

)
, which have length

√
72 + 42 =

√
65. The first vector has

length 1, so by Pythagorean’s theorem, the second vector has length
√

65− 1 = 8, so we have

1

x2
+

1

y2
= 64 =⇒

√
x2 + y2 = ±8xy.

However, the first equation indicates that x < 0, while the second equation indicates that y > 0, so
xy < 0. Thus,

√
x2 + y2 = −8xy. Plugging this into both of the starting equations give

− 1

8y
− 1

x
= 7 and − 1

8x
+

1

y
= 4.

Solving this gives (x, y) =
(
− 13

96 ,
13
40

)
, which works.

Solution 2: Let x = r cos θ and y = r sin θ. Then our equations read

cos θ − 1

r cos θ
= 7

sin θ +
1

r sin θ
= 4.

Multiplying the first equation by cos θ and the second by sin θ, and then adding the two gives 7 cos θ+
4 sin θ = 1. This means

4 sin θ = 1− 7 cos θ =⇒ 16 sin2 θ = 1− 14 cos θ + 49 cos2 θ =⇒ 65 cos2 θ − 14 cos θ − 15 = 0.

This factors as (13 cos θ + 5)(5 cos θ − 3) = 0, so cos θ is either 3
5 or − 5

13 . This means either cos θ = 3
5

and sin θ = − 4
5 , or cos θ = − 5

13 and sin θ = 12
13 .

The first case, plugging back in, makes r a negative number, a contradiction, so we take the second

case. Then x = 1
cos θ−7 = − 13

96 and y = 1
4−sin θ = 13

40 . The answer is (x, y) =
(
− 13

96 ,
13
40

)
.

6. Compute the sum of all positive integers n such that 50 ≤ n ≤ 100 and 2n+ 3 does not divide 2n! − 1.

Proposed by: Pitchayut Saengrungkongka

Answer: 222

Solution: We claim that if n ≥ 10, then 2n+ 3 - 2n!−1 if and only if both n+ 1 and 2n+ 3 are prime.

If both n + 1 and 2n + 3 are prime, then assume 2n + 3 | 2n! − 1. By Fermat Little Theorem,
2n + 3 | 22n+2 + 1. However, since n + 1 is prime, gcd(2n + 2, n!) = 2, so 2n + 3 | 22 − 1 = 3, a
contradiction.

If 2n+ 3 is composite, then ϕ(2n+ 3) is even and is at most 2n, so ϕ(2n+ 3) | n!, done.

If n+ 1 is composite but 2n+ 3 is prime, then 2n+ 2 | n!, so 2n+ 3 | 2n! − 1.

The prime numbers between 50 and 100 are 53, 59, 61, 67, 71, 73, 79, 83, 89, 97. If one of these is n+ 1,
then the only numbers that make 2n + 3 prime are 53, 83, and 89, making n one of 52, 82, and 88.
These sum to 222 .

7. Let P (n) = (n− 13)(n− 23) . . . (n− 403) for positive integers n. Suppose that d is the largest positive
integer that divides P (n) for every integer n > 2023. If d is a product of m (not necessarily distinct)
prime numbers, compute m.

Proposed by: Nithid Anchaleenukoon

Answer: 48



Solution: We first investigate what primes divide d. Notice that a prime p divides P (n) for all
n ≥ 2024 if and only if {13, 23, . . . , 403} contains all residues in modulo p. Hence, p ≤ 40. Moreover,
x3 ≡ 1 must not have other solution in modulo p than 1, so p 6≡ 1 (mod 3). Thus, the set of prime
divisors of d is S = {2, 3, 5, 11, 17, 23, 29}.
Next, the main claim is that for all prime p ∈ S, the minimum value of νp(P (n)) across all n ≥ 2024

is
⌊
40
p

⌋
. To see why, note the following:

• Lower Bound. Note that for all n ∈ Z, one can group n − 13, n − 23, . . . , n − 403 into
⌊
40
p

⌋
contiguous blocks of size p. Since p 6≡ 1 (mod 3), x3 span through all residues modulo p, so each
block will have one number divisible by p. Hence, among n − 13, n − 23, . . . , n − 403, at least⌊
40
p

⌋
are divisible by p, implying that νp(P (n)) >

⌊
40
p

⌋
.

• Upper Bound. We pick any n such that νp(n) = 1 so that only terms in form n− p3, n− (2p)3,
. . . are divisible by p. Note that these terms are not divisible by p2 either, so in this case, we

have νp(P (n)) =
⌊
40
p

⌋
.

Hence, νp(d) =
⌊
40
p

⌋
for all prime p ∈ S. Thus, the answer is

∑
p∈S

⌊
40

p

⌋
=

⌊
40

2

⌋
+

⌊
40

3

⌋
+

⌊
40

5

⌋
+

⌊
40

11

⌋
+

⌊
40

17

⌋
+

⌊
40

23

⌋
+

⌊
40

29

⌋
= 48 .

8. Let ζ = cos 2π
13 + i sin 2π

13 . Suppose a > b > c > d are positive integers satisfying

|ζa + ζb + ζc + ζd| =
√

3.

Compute the smallest possible value of 1000a+ 100b+ 10c+ d.

Proposed by: Rishabh Das

Answer: 7521

Solution: We may as well take d = 1 and shift the other variables down by d to get |ζa′ +ζb′ +ζc′ +1| =√
3. Multiplying by its conjugate gives

(ζa
′
+ ζb

′
+ ζc

′
+ 1)(ζ−a

′
+ ζ−b

′
+ ζ−c

′
+ 1) = 3.

Expanding, we get

1 +
∑

x,y∈S, x 6=y

ζx−y = 0,

where S = {a′, b′, c′, 0}.
This is the sum of 13 terms, which hints that S − S should form a complete residue class mod 13. We
can prove this with the fact that the minimal polynomial of ζ is 1 + x+ x2 + · · ·+ x12.

The minimum possible value of a′ is 6, as otherwise every difference would be between −5 and 5 mod
13. Take a′ = 6. If b′ ≤ 2 then we couldn’t form a difference of 3 in S, so b′ ≥ 3. Moreover, 6−3 = 3−0,
so 3 6∈ S, so b′ = 4 is the best possible. Then c′ = 1 works.

If a′ = 6, b′ = 4, and c′ = 1, then a = 7, b = 5, c = 2, and d = 1, so the answer is 7521 .



9. Suppose a, b, and c are complex numbers satisfying

a2 = b− c,
b2 = c− a, and

c2 = a− b.

Compute all possible values of a+ b+ c.

Proposed by: Rishabh Das

Answer: 0,±i
√

6

Solution: Summing the equations gives a2 + b2 + c2 = 0 and summing a times the first equation and
etc. gives a3 + b3 + c3 = 0. Let a+ b+ c = k. Then a2 + b2 + c2 = 0 means ab+ bc+ ca = k2/2, and

a3 + b3 + c3 = 0 =⇒ −3abc = a3 + b3 + c3 − 3abc = (a+ b+ c)(a2 + b2 + c2 − ab− bc− ca) = −k3/2,

so abc = k3/6.

This means a, b, and c are roots of the cubic

x3 − kx2 + (k2/2)x− (k3/6) = 0

for some k.

Next, note that

a4 + b4 + c4 =
∑
cyc

a(ka2 − (k2/2)a+ (k3/6))

=
∑
cyc

k(ka2 − (k2/2)a+ (k3/6))− (k2/2)a2 + (k3/6)a

=
∑
cyc

(k2/2)a2 − (k3/3)a+ (k4/6)

= −k4/3 + k4/2

= k4/6.

After this, there are two ways to extract the values of k.

• Summing squares of each equation gives

a4 + b4 + c4 =
∑
cyc

(a− b)2 = 2(a2 + b2 + c2)− 2(ab+ bc+ ca) = −k2,

so
k4

6
= −k2 =⇒ k = 0,±i

√
6 .

• Summing a2 times the first equation, etc. gives

a4 + b4 + c4 =
∑
cyc

a2(b− c) = −(a− b)(b− c)(c− a) = −a2b2c2 = −k
6

36
,

so
k4

6
= −k

6

36
=⇒ k = 0,±i

√
6 .

We can achieve k = 0 with a = b = c = 0. Letting a, b, and c be the roots of x3− (i
√

6)x2−3x+ (i
√

6)
will force one of a2 = b− c and all other equalities or a2 − c− b and all other equalities to hold, if the
latter happens, swap b and c. Finally, for these (a, b, c), take (−a,−c,−b) to get −i

√
6. Thus, all of

these are achievable.



10. A polynomial f ∈ Z[x] is called splitty if and only if for every prime p, there exist polynomials
gp, hp ∈ Z[x] with deg gp,deg hp < deg f and all coefficients of f − gphp are divisible by p. Compute
the sum of all positive integers n ≤ 100 such that the polynomial x4 + 16x2 + n is splitty.

Proposed by: Pitchayut Saengrungkongka

Answer: 693

Solution: We claim that x4 + ax2 + b is splitty if and only if either b or a2 − 4b is a perfect square.
(The latter means that the polynomial splits into (x2 − r)(x2 − s)).
Assuming the characterization, one can easily extract the answer. For a = 16 and b = n, one of
n and 64 − n has to be a perfect square. The solutions to this that are at most 64 form 8 pairs
that sum to 64 (if we include 0), and then we additionally have 81 and 100. This means the sum is

64 · 8 + 81 + 100 = 693 .

Now, we move on to prove the characterization.

Necessity.

Take a prime p such that neither a2 − 4b nor b is a quadratic residue modulo p (exists by Dirichlet +
CRT + QR). Work in Fp. Now, suppose that

x4 + ax2 + b = (x2 +mx+ n)(x2 + sx+ t).

Then, looking at the x3-coefficient gives m + s = 0 or s = −m. Looking at the x-coefficient gives
m(n− t) = 0.

• Ifm = 0, then s = 0, so x4+ax2+b = (x2+n)(x2+t), which means a2−4b = (n+t)2−4nt = (n−t)2,
a quadratic residue modulo p, contradiction.

• If n = t, then b = nt is a square modulo p, a contradiction. (The major surprise of this problem
is that this suffices, which will be shown below.)

Sufficiency.

Clearly, the polynomial splits in p = 2 because in F2[x], we have x4 + ax2 + b = (x2 + ax+ b)2. Now,
assume p is odd.

If a2 − 4b is a perfect square, then x4 + ax2 + b splits into (x2 − r)(x2 − s) even in Z[x].

If b is a perfect square, then let b = k2. We then note that

• x4 + ax2 + b splits in form (x2 − r)(x2 − s) if
(
a2−4k2

p

)
= 1.

• x4 + ax2 + b splits in form (x2 + rx+ k)(x2 − rx+ k) if a = 2k − r2, or
(

2k−a
p

)
= 1.

• x4 + ax2 + b splits in form (x2 + rx− k)(x2 − rx− k) if a = −2k − r2, or
(
−2k−a
p

)
= 1.

Since (2k − a)(−2k − a) = a2 − 4k2, it follows that at least one of these must happen.


