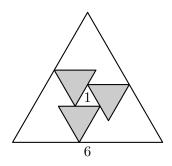
HMMT February 2024 February 17, 2024 Geometry Round

1. Inside an equilateral triangle of side length 6, three congruent equilateral triangles of side length x with sides parallel to the original equilateral triangle are arranged so that each has a vertex on a side of the larger triangle, and a vertex on another one of the three equilateral triangles, as shown below.

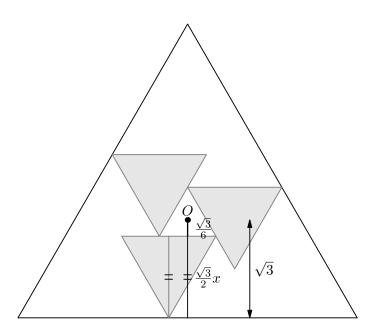


A smaller equilateral triangle formed between the three congruent equilateral triangles has side length 1. Compute x.

Proposed by: Rishabh Das

Answer: $\frac{5}{3}$

Solution:

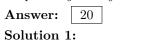


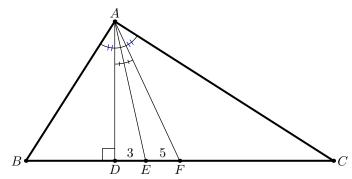
Let x be the side length of the shaded triangles. Note that the centers of the triangles with side lengths 1 and 6 coincide; call this common center O.

The distance from O to a side of the equilateral triangle with side length 1 is $\sqrt{3}/6$. Similarly the distance from O to a side of the equilateral triangle with side length 6 is $\sqrt{3}$. Notice the difference of these two distances is exactly the length of the altitude of one of shaded triangles. So

$$\sqrt{3} - \frac{\sqrt{3}}{6} = \frac{\sqrt{3}}{2}x \implies x = \boxed{\frac{5}{3}}.$$

2. Let ABC be a triangle with $\angle BAC = 90^{\circ}$. Let D, E, and F be the feet of altitude, angle bisector, and median from A to BC, respectively. If DE = 3 and EF = 5, compute the length of BC. *Proposed by: Jerry Liang*





Since F is the circumcenter of $\triangle ABC$, we have that AE bisects $\angle DAF$. So by the angle bisector theorem, we can set AD = 3x and AF = 5x. Applying Pythagorean theorem to $\triangle ADE$ then gives

$$(3x)^2 + (5+3)^2 = (5x)^2 \implies x = 2.$$

So AF = 5x = 10 and BC = 2AF = 20.

Solution 2: Let BF = FC = x. We know that $\triangle BAD \sim \triangle ACD$ so $\frac{BA}{AC} = \frac{BD}{DA} = \frac{DA}{DC}$ and thus $\frac{BA}{AC} = \sqrt{\frac{BD}{DC}} = \sqrt{\frac{x-8}{x+8}}$. By Angle Bisector Theorem, we also have $\frac{AB}{AC} = \frac{BE}{EC} = \frac{x-5}{x+5}$, which means that

$$\sqrt{\frac{x-8}{x+8}} = \frac{x-5}{x+5} \implies (x-8)(x+5)^2 = (x+8)(x-5)^2$$

which expands to

$$x^{3} + 2x^{2} - 55x - 200 = x^{3} - 2x^{2} - 55x + 200 \implies 4x^{2} = 400$$

This solves to x = 10, and so BC = 2x = 20.

3. Let Ω and ω be circles with radii 123 and 61, respectively, such that the center of Ω lies on ω . A chord of Ω is cut by ω into three segments, whose lengths are in the ratio 1:2:3 in that order. Given that this chord is not a diameter of Ω , compute the length of this chord.

Proposed by: Benjamin Kang, Holden Mui, Pitchayut Saengrungkongka

Answer: 42

Solution: Denote the center of Ω as O. Let the chord intersect the circles at W, X, Y, Z so that WX = t, XY = 2t, and YZ = 3t. Notice that Y is the midpoint of WZ; hence $\overline{OY} \perp \overline{WXYZ}$.

The fact that $\angle OYX = 90^{\circ}$ means X is the antipode of O on ω , so OX = 122. Now applying power of point to X with respect to Ω gives

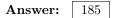
$$245 = 123^2 - OX^2 = WX \cdot XZ = 5t^2 \implies t = 7.$$

Hence the answer is 6t = 42.

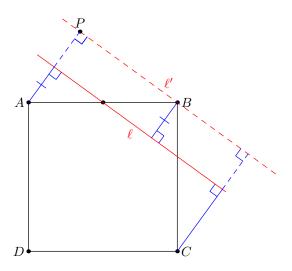


4. Let ABCD be a square, and let ℓ be a line passing through the midpoint of segment \overline{AB} that intersects segment \overline{BC} . Given that the distances from A and C to ℓ are 4 and 7, respectively, compute the area of ABCD.

Proposed by: Ethan Liu



Solution:

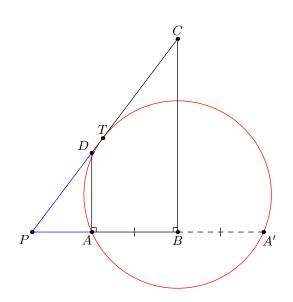


Consider the line ℓ' through *B* parallel to ℓ , and drop perpendiculars from *A* to ℓ' and *C* to ℓ' . Note that because ℓ passes through the midpoint of segment *AB*, the distance from *B* to ℓ is 4. Thus, the distances from *A* to ℓ' and from *C* to ℓ' are 4 + 4 = 8 and 4 + 7 = 11, respectively. Let *P* be the foot from *A* to ℓ' . Rotating the square 90° from *B* to *A* sends the altitude from *C* to ℓ' to the segment along ℓ' between *B* and the foot from *A* to ℓ' ; hence BP = 11. So the side length of the square is $\sqrt{AP^2 + BP^2} = \sqrt{8^2 + 11^2}$, which means the area of the square is $8^2 + 11^2 = \boxed{185}$.

5. Let ABCD be a convex trapezoid such that $\angle DAB = \angle ABC = 90^{\circ}$, DA = 2, AB = 3, and BC = 8. Let ω be a circle passing through A and tangent to segment \overline{CD} at point T. Suppose that the center of ω lies on line BC. Compute CT.

Proposed by: Pitchayut Saengrungkongka

Answer: $4\sqrt{5} - \sqrt{7}$ Solution:



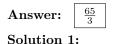
Let A' be the reflection of A across BC, and let $P = AB \cap CD$. Then since the center of ω lies on BC, we have that ω passes through A'. Thus, by power of a point, $PT^2 = PA \cdot PA'$. By similar triangles, we have

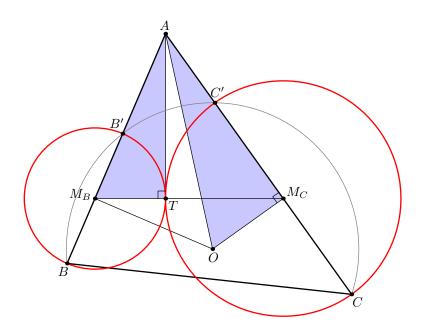
$$\frac{PA}{AD} = \frac{PB}{BC} \implies \frac{PA}{2} = \frac{PA+3}{8} \implies PA = 1$$

and $A'P = 1 + 2 \cdot 3 = 7$, so $PT = \sqrt{7}$. But by the Pythagorean Theorem, $PC = \sqrt{PB^2 + BC^2} = 4\sqrt{5}$, and since T lies on segment CD, it lies between C and P, so $CT = \boxed{4\sqrt{5} - \sqrt{7}}$.

6. In triangle ABC, a circle ω with center O passes through B and C and intersects segments \overline{AB} and \overline{AC} again at B' and C', respectively. Suppose that the circles with diameters BB' and CC' are externally tangent to each other at T. If AB = 18, AC = 36, and AT = 12, compute AO.

Proposed by: Ethan Liu



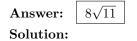


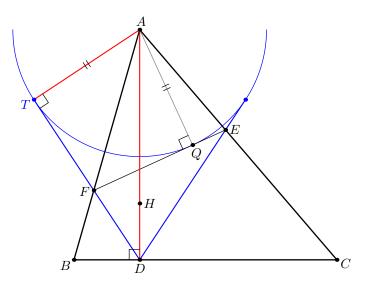
By Radical Axis Theorem, we know that AT is tangent to both circles. Moreove, consider power of a point A with respect to these three circles, we have $AB \cdot AB' = AT^2 = AC \cdot AC'$. Thus $AB' = \frac{12^2}{18} = 8$, and $AC' = \frac{12^2}{36} = 4$. Consider the midpoints M_B , M_C of segments $\overline{BB'}$, $\overline{CC'}$, respectively. We have $\angle OM_BA = \angle OM_CA = 90^\circ$, so O is the antipode of A in (AM_BM_C) . Notice that $\triangle AM_BT \sim \triangle AOM_C$, so $\frac{AO}{AM_C} = \frac{AM_B}{AT}$. Now, we can do the computations as follow:

$$AO = \frac{AM_B \cdot AM_C}{AT}$$
$$= \left(\frac{AB + AB'}{2}\right) \left(\frac{AC + AC'}{2}\right) \frac{1}{AT}$$
$$= \left(\frac{8 + 18}{2}\right) \left(\frac{36 + 4}{2}\right) \frac{1}{12} = \boxed{\frac{65}{3}}.$$

7. Let ABC be an acute triangle. Let D, E, and F be the feet of altitudes from A, B, and C to sides \overline{BC} , \overline{CA} , and \overline{AB} , respectively, and let Q be the foot of altitude from A to line EF. Given that AQ = 20, BC = 15, and AD = 24, compute the perimeter of triangle DEF.

Proposed by: Isabella Zhu





Note that A is the excenter of $\triangle DEF$ and AQ is the length of the exadius. Let T be the tangency point of the A-excircle to line DF. We have AQ = AT = 20. It is well known that the length of DT is the semiperimeter of DEF. Note that $\triangle ADT$ is a right triangle, so

$$AT^2 + DT^2 = AD^2$$

which implies

$$DT = \sqrt{24^2 - 20^2} = 4\sqrt{11}.$$
 Thus, the perimeter of $\triangle DEF$ is $2 \cdot 4\sqrt{11} = \boxed{8\sqrt{11}}$.

8. Let ABTCD be a convex pentagon with area 22 such that AB = CD and the circumcircles of triangles TAB and TCD are internally tangent. Given that $\angle ATD = 90^{\circ}$, $\angle BTC = 120^{\circ}$, BT = 4, and CT = 5, compute the area of triangle TAD.

 $Proposed \ by: \ Pitchayut \ Saengrungkongka$

Answer: $64(2-\sqrt{3})$

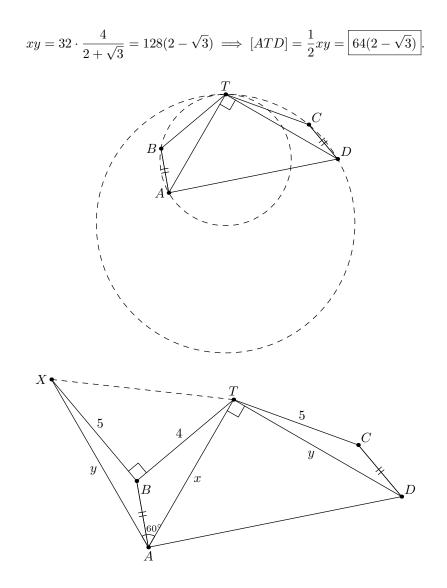
Solution: Paste $\triangle TCD$ outside the pentagon to get $\triangle ABX \cong \triangle DCT$. From the tangent circles condition, we get

$$\angle XBT = 360^{\circ} - \angle XBA - \angle ABT$$
$$= 360^{\circ} - \angle DCT - \angle ABT$$
$$= 360^{\circ} - 270^{\circ} = 90^{\circ}$$
$$\angle XAT = 90^{\circ} - \angle BXA - \angle ATB$$
$$= 90^{\circ} - \angle CTD - \angle ATB$$
$$= 90^{\circ} - (120^{\circ} - 90^{\circ}) = 60^{\circ}.$$

Moreover, if x = AT and y = TD, then notice that

$$\begin{split} [ABTCD] &= [ABT] + [CDT] + [ATD] \\ &= [XAT] - [XBT] + [ATD] \\ &= \frac{1}{2}xy\sin 60^\circ - \frac{1}{2} \cdot 4 \cdot 5 + \frac{1}{2}xy \\ &= \frac{2 + \sqrt{3}}{4}xy - 10, \end{split}$$

so we have

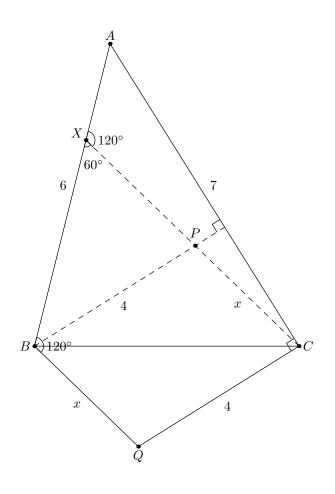


9. Let ABC be a triangle. Let X be the point on side \overline{AB} such that $\angle BXC = 60^{\circ}$. Let P be the point on segment \overline{CX} such that $BP \perp AC$. Given that AB = 6, AC = 7, and BP = 4, compute CP.

 $Proposed \ by: \ Pitchayut \ Saengrungkongka$

Answer: $\sqrt{38} - 3$

Solution: Construct parallelogram BPCQ. We have CQ = 4, $\angle ACQ = 90^{\circ}$, and $\angle ABQ = 120^{\circ}$. Thus, $AQ = \sqrt{AC^2 + CQ^2} = \sqrt{65}$, so if x = CP = BQ, then by Law of Cosine, $x^2 + 6x + 6^2 = 65$. Solving this gives the answer $x = \sqrt{38} - 3$.



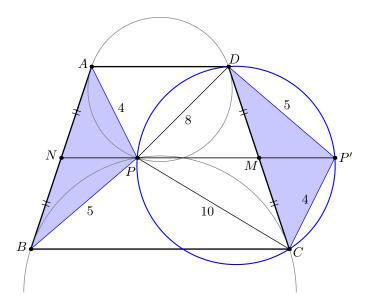
10. Suppose point P is inside quadrilateral ABCD such that

$$\angle PAB = \angle PDA,$$

 $\angle PAD = \angle PDC,$
 $\angle PBA = \angle PCB,$ and
 $\angle PBC = \angle PCD.$

If PA = 4, PB = 5, and PC = 10, compute the perimeter of ABCD. Proposed by: Rishabh Das

Answer: $\frac{9\sqrt{410}}{5}$ Solution:



First of all, note that the angle conditions imply that $\angle BAD + \angle ABC = 180^{\circ}$, so the quadrilateral is a trapezoid with $AD \parallel BC$. Moreover, they imply AB and CD are both tangent to (PAD) and (PBC); in particular AB = CD or ABCD is isosceles trapezoid. Since the midpoints of AD and BC clearly lie on the radical axis of the two circles, P is on the midline of the trapezoid.

Reflect $\triangle PAB$ over the midline and translate it so that D = B' and C = A'. Note that P' is still on the midline. The angle conditions now imply PDP'C is cyclic, and PP' bisects CD. This means $10 \cdot 4 = PC \cdot CP' = PD \cdot DP' = 5 \cdot PD$, so PD = 8.

Now PDP'C is a cyclic quadrilateral with side lengths 10, 8, 5, 4 in that order. Using standard cyclic quadrilateral facts (either law of cosines or three applications on Ptolemy on the three possible quadrilaterals formed with these side lengths) we get $CD = \frac{2\sqrt{410}}{5}$ and $PP' = \frac{\sqrt{410}}{2}$. Finally, note that PP' is equal to the midline of the trapezoid, so the final answer is

$$2 \cdot CD + 2 \cdot PP' = \boxed{\frac{9\sqrt{410}}{5}}.$$