HMMT February 2024

February 17, 2024

Geometry Round

1. Inside an equilateral triangle of side length 6 , three congruent equilateral triangles of side length x with sides parallel to the original equilateral triangle are arranged so that each has a vertex on a side of the larger triangle, and a vertex on another one of the three equilateral triangles, as shown below.

A smaller equilateral triangle formed between the three congruent equilateral triangles has side length 1. Compute x.

Proposed by: Rishabh Das
Answer: $\frac{5}{3}$

Solution:

Let x be the side length of the shaded triangles. Note that the centers of the triangles with side lengths 1 and 6 coincide; call this common center O.
The distance from O to a side of the equilateral triangle with side length 1 is $\sqrt{3} / 6$. Similarly the distance from O to a side of the equilateral triangle with side length 6 is $\sqrt{3}$. Notice the difference of these two distances is exactly the length of the altitude of one of shaded triangles. So

$$
\sqrt{3}-\frac{\sqrt{3}}{6}=\frac{\sqrt{3}}{2} x \Longrightarrow x=\begin{array}{|c}
\frac{5}{3} \\
\hline
\end{array}
$$

2. Let $A B C$ be a triangle with $\angle B A C=90^{\circ}$. Let D, E, and F be the feet of altitude, angle bisector, and median from A to $B C$, respectively. If $D E=3$ and $E F=5$, compute the length of $B C$.
Proposed by: Jerry Liang
Answer: 20

Solution 1:

Since F is the circumcenter of $\triangle A B C$, we have that $A E$ bisects $\angle D A F$. So by the angle bisector theorem, we can set $A D=3 x$ and $A F=5 x$. Applying Pythagorean theorem to $\triangle A D E$ then gives

$$
(3 x)^{2}+(5+3)^{2}=(5 x)^{2} \Longrightarrow x=2
$$

So $A F=5 x=10$ and $B C=2 A F=20$.

Solution 2: Let $B F=F C=x$. We know that $\triangle B A D \sim \triangle A C D$ so $\frac{B A}{A C}=\frac{B D}{D A}=\frac{D A}{D C}$ and thus $\frac{B A}{A C}=\sqrt{\frac{B D}{D C}}=\sqrt{\frac{x-8}{x+8}}$. By Angle Bisector Theorem, we also have $\frac{A B}{A C}=\frac{B E}{E C}=\frac{x-5}{x+5}$, which means that

$$
\sqrt{\frac{x-8}{x+8}}=\frac{x-5}{x+5} \Longrightarrow(x-8)(x+5)^{2}=(x+8)(x-5)^{2}
$$

which expands to

$$
x^{3}+2 x^{2}-55 x-200=x^{3}-2 x^{2}-55 x+200 \Longrightarrow 4 x^{2}=400
$$

This solves to $x=10$, and so $B C=2 x=20$.
3. Let Ω and ω be circles with radii 123 and 61 , respectively, such that the center of Ω lies on ω. A chord of Ω is cut by ω into three segments, whose lengths are in the ratio $1: 2: 3$ in that order. Given that this chord is not a diameter of Ω, compute the length of this chord.
Proposed by: Benjamin Kang, Holden Mui, Pitchayut Saengrungkongka
Answer: 42
Solution: Denote the center of Ω as O. Let the chord intersect the circles at W, X, Y, Z so that $W X=t, X Y=2 t$, and $Y Z=3 t$. Notice that Y is the midpoint of $W Z$; hence $\overline{O Y} \perp \overline{W X Y Z}$.
The fact that $\angle O Y X=90^{\circ}$ means X is the antipode of O on ω, so $O X=122$. Now applying power of point to X with respect to Ω gives

$$
245=123^{2}-O X^{2}=W X \cdot X Z=5 t^{2} \Longrightarrow t=7
$$

Hence the answer is $6 t=42$.

4. Let $A B C D$ be a square, and let ℓ be a line passing through the midpoint of segment $\overline{A B}$ that intersects segment $\overline{B C}$. Given that the distances from A and C to ℓ are 4 and 7 , respectively, compute the area of $A B C D$.

Proposed by: Ethan Liu
Answer: 185

Solution:

Consider the line ℓ^{\prime} through B parallel to ℓ, and drop perpendiculars from A to ℓ^{\prime} and C to ℓ^{\prime}. Note that because ℓ passes through the midpoint of segment $A B$, the distance from B to ℓ is 4 . Thus, the distances from A to ℓ^{\prime} and from C to ℓ^{\prime} are $4+4=8$ and $4+7=11$, respectively. Let P be the foot from A to ℓ^{\prime}. Rotating the square 90° from B to A sends the altitude from C to ℓ^{\prime} to the segment along ℓ^{\prime} between B and the foot from A to ℓ^{\prime}; hence $B P=11$. So the side length of the square is $\sqrt{A P^{2}+B P^{2}}=\sqrt{8^{2}+11^{2}}$, which means the area of the square is $8^{2}+11^{2}=185$.
5. Let $A B C D$ be a convex trapezoid such that $\angle D A B=\angle A B C=90^{\circ}, D A=2, A B=3$, and $B C=8$. Let ω be a circle passing through A and tangent to segment $\overline{C D}$ at point T. Suppose that the center of ω lies on line $B C$. Compute $C T$.
Proposed by: Pitchayut Saengrungkongka
Answer: $4 \sqrt{5}-\sqrt{7}$
Solution:

Let A^{\prime} be the reflection of A across $B C$, and let $P=A B \cap C D$. Then since the center of ω lies on $B C$, we have that ω passes through A^{\prime}. Thus, by power of a point, $P T^{2}=P A \cdot P A^{\prime}$. By similar triangles, we have

$$
\frac{P A}{A D}=\frac{P B}{B C} \Longrightarrow \frac{P A}{2}=\frac{P A+3}{8} \Longrightarrow P A=1
$$

and $A^{\prime} P=1+2 \cdot 3=7$, so $P T=\sqrt{7}$. But by the Pythagorean Theorem, $P C=\sqrt{P B^{2}+B C^{2}}=4 \sqrt{5}$, and since T lies on segment $C D$, it lies between C and P, so $C T=4 \sqrt{5}-\sqrt{7}$.
6. In triangle $A B C$, a circle ω with center O passes through B and C and intersects segments $\overline{A B}$ and $\overline{A C}$ again at B^{\prime} and C^{\prime}, respectively. Suppose that the circles with diameters $B B^{\prime}$ and $C C^{\prime}$ are externally tangent to each other at T. If $A B=18, A C=36$, and $A T=12$, compute $A O$.
Proposed by: Ethan Liu
Answer: $\frac{65}{3}$
Solution 1:

By Radical Axis Theorem, we know that $A T$ is tangent to both circles. Moreove, consider power of a point A with respect to these three circles, we have $A B \cdot A B^{\prime}=A T^{2}=A C \cdot A C^{\prime}$. Thus $A B^{\prime}=\frac{12^{2}}{18}=8$, and $A C^{\prime}=\frac{12^{2}}{36}=4$. Consider the midpoints M_{B}, M_{C} of segments $\overline{B B^{\prime}}, \overline{C C^{\prime}}$, respectively. We have $\angle O M_{B} A=\angle O M_{C} A=90^{\circ}$, so O is the antipode of A in $\left(A M_{B} M_{C}\right)$. Notice that $\triangle A M_{B} T \sim \triangle A O M_{C}$, so $\frac{A O}{A M_{C}}=\frac{A M_{B}}{A T}$. Now, we can do the computations as follow:

$$
\begin{aligned}
A O & =\frac{A M_{B} \cdot A M_{C}}{A T} \\
& =\left(\frac{A B+A B^{\prime}}{2}\right)\left(\frac{A C+A C^{\prime}}{2}\right) \frac{1}{A T} \\
& =\left(\frac{8+18}{2}\right)\left(\frac{36+4}{2}\right) \frac{1}{12}=\frac{65}{3}
\end{aligned}
$$

7. Let $A B C$ be an acute triangle. Let D, E, and F be the feet of altitudes from A, B, and C to sides $\overline{B C}$, $\overline{C A}$, and $\overline{A B}$, respectively, and let Q be the foot of altitude from A to line $E F$. Given that $A Q=20$, $B C=15$, and $A D=24$, compute the perimeter of triangle $D E F$.
Proposed by: Isabella Zhu
Answer: $8 \sqrt{11}$

Solution:

Note that A is the excenter of $\triangle D E F$ and $A Q$ is the length of the exradius. Let T be the tangency point of the A-excircle to line $D F$. We have $A Q=A T=20$. It is well known that the length of $D T$ is the semiperimeter of $D E F$. Note that $\triangle A D T$ is a right triangle, so

$$
A T^{2}+D T^{2}=A D^{2}
$$

which implies

$$
D T=\sqrt{24^{2}-20^{2}}=4 \sqrt{11}
$$

Thus, the perimeter of $\triangle D E F$ is $2 \cdot 4 \sqrt{11}=8 \sqrt{11}$.
8. Let $A B T C D$ be a convex pentagon with area 22 such that $A B=C D$ and the circumcircles of triangles $T A B$ and $T C D$ are internally tangent. Given that $\angle A T D=90^{\circ}, \angle B T C=120^{\circ}, B T=4$, and $C T=5$, compute the area of triangle $T A D$.
Proposed by: Pitchayut Saengrungkongka
Answer: $64(2-\sqrt{3})$
Solution: Paste $\triangle T C D$ outside the pentagon to get $\triangle A B X \cong \triangle D C T$. From the tangent circles condition, we get

$$
\begin{aligned}
\angle X B T & =360^{\circ}-\angle X B A-\angle A B T \\
& =360^{\circ}-\angle D C T-\angle A B T \\
& =360^{\circ}-270^{\circ}=90^{\circ} \\
\angle X A T & =90^{\circ}-\angle B X A-\angle A T B \\
& =90^{\circ}-\angle C T D-\angle A T B \\
& =90^{\circ}-\left(120^{\circ}-90^{\circ}\right)=60^{\circ} .
\end{aligned}
$$

Moreover, if $x=A T$ and $y=T D$, then notice that

$$
\begin{aligned}
{[A B T C D] } & =[A B T]+[C D T]+[A T D] \\
& =[X A T]-[X B T]+[A T D] \\
& =\frac{1}{2} x y \sin 60^{\circ}-\frac{1}{2} \cdot 4 \cdot 5+\frac{1}{2} x y \\
& =\frac{2+\sqrt{3}}{4} x y-10
\end{aligned}
$$

so we have

$$
x y=32 \cdot \frac{4}{2+\sqrt{3}}=128(2-\sqrt{3}) \Longrightarrow[A T D]=\frac{1}{2} x y=64(2-\sqrt{3}) .
$$

9. Let $A B C$ be a triangle. Let X be the point on side $\overline{A B}$ such that $\angle B X C=60^{\circ}$. Let P be the point on segment $\overline{C X}$ such that $B P \perp A C$. Given that $A B=6, A C=7$, and $B P=4$, compute $C P$.
Proposed by: Pitchayut Saengrungkongka
Answer: $\sqrt{38}-3$
Solution: Construct parallelogram $B P C Q$. We have $C Q=4, \angle A C Q=90^{\circ}$, and $\angle A B Q=120^{\circ}$. Thus, $A Q=\sqrt{A C^{2}+C Q^{2}}=\sqrt{65}$, so if $x=C P=B Q$, then by Law of Cosine, $x^{2}+6 x+6^{2}=65$. Solving this gives the answer $x=\sqrt{38}-3$.

10. Suppose point P is inside quadrilateral $A B C D$ such that

$$
\begin{aligned}
& \angle P A B=\angle P D A \\
& \angle P A D=\angle P D C, \\
& \angle P B A=\angle P C B, \text { and } \\
& \angle P B C=\angle P C D
\end{aligned}
$$

If $P A=4, P B=5$, and $P C=10$, compute the perimeter of $A B C D$.
Proposed by: Rishabh Das
Answer: $\frac{9 \sqrt{410}}{5}$

Solution:

First of all, note that the angle conditions imply that $\angle B A D+\angle A B C=180^{\circ}$, so the quadrilateral is a trapezoid with $A D \| B C$. Moreover, they imply $A B$ and $C D$ are both tangent to $(P A D)$ and $(P B C)$; in particular $A B=C D$ or $A B C D$ is isosceles trapezoid. Since the midpoints of $A D$ and $B C$ clearly lie on the radical axis of the two circles, P is on the midline of the trapezoid.
Reflect $\triangle P A B$ over the midline and translate it so that $D=B^{\prime}$ and $C=A^{\prime}$. Note that P^{\prime} is still on the midline. The angle conditions now imply $P D P^{\prime} C$ is cyclic, and $P P^{\prime}$ bisects $C D$. This means $10 \cdot 4=P C \cdot C P^{\prime}=P D \cdot D P^{\prime}=5 \cdot P D$, so $P D=8$.
Now $P D P^{\prime} C$ is a cyclic quadrilateral with side lengths $10,8,5,4$ in that order. Using standard cyclic quadrilateral facts (either law of cosines or three applications on Ptolemy on the three possible quadrilaterals formed with these side lengths) we get $C D=\frac{2 \sqrt{410}}{5}$ and $P P^{\prime}=\frac{\sqrt{410}}{2}$. Finally, note that $P P^{\prime}$ is equal to the midline of the trapezoid, so the final answer is

$$
2 \cdot C D+2 \cdot P P^{\prime}=\frac{9 \sqrt{410}}{5}
$$

