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Guts Round

1. [5] Compute the sum of all integers n such that n2 − 3000 is a perfect square.
Proposed by: Holden Mui
Answer: 0

Solution: If n2 − 3000 is a square, then (−n)2 − 3000 is also a square, so the sum is 0 .

2. [5] Jerry and Neil have a 3-sided die that rolls the numbers 1, 2, and 3, each with probability 1
3 . Jerry

rolls first, then Neil rolls the die repeatedly until his number is at least as large as Jerry’s. Compute
the probability that Neil’s final number is 3.
Proposed by: Rishabh Das

Answer: 11
18

Solution: If Jerry rolls k, then there is a 1
4−k probability that Neil’s number is 3, since Neil has an

equal chance of rolling any of the 4− k integers not less than k. Thus, the answer is

1

3

(
1 +

1

2
+

1

3

)
=

11

18
.

3. [5] Compute the number of even positive integers n ≤ 2024 such that 1, 2, . . . , n can be split into n
2

pairs, and the sum of the numbers in each pair is a multiple of 3.
Proposed by: Rishabh Das
Answer: 675

Solution: There have to be an even number of multiples of 3 at most n, so this means that n ≡ 0, 2
(mod 6). (We can also say that there should be an equal number of 1 (mod 3) and 2 (mod 3) numbers,
which gives the same restriction.)
We claim that all these work. We know there are an even number of multiples of 3, so we can pair
them; then we can pair 3k + 1 and 3k + 2 for all k.
This means the answer is 2022

3 + 1 = 675 .

4. [5] Equilateral triangles ABF and BCG are constructed outside regular pentagon ABCDE. Compute
∠FEG.
Proposed by: Karthik Venkata Vedula

Answer: 48◦ = 4π
15

Solution: We have ∠FEG = ∠AEG− ∠AEF . Since EG bisects ∠AED, we get ∠AEG = 54◦.
Now, ∠EAF = 108◦ + 60◦ = 168◦. Since triangle EAF is isosceles, this means ∠AEF = 6◦, so the
answer is 54◦ − 6◦ = 48◦ .
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5. [6] Let a, b, and c be real numbers such that

a+ b+ c = 100,

ab+ bc+ ca = 20, and
(a+ b)(a+ c) = 24.

Compute all possible values of bc.
Proposed by: Pitchayut Saengrungkongka
Answer: 224, −176

Solution: We first expand the left-hand-side of the third equation to get (a + b)(a + c) = a2 + ac +
ab+ bc = 24. From this, we subtract the second equation to obtain a2 = 4, so a = ±2.
If a = 2, plugging into the first equation gives us b + c = 98 and plugging into the second equation
gives us 2(b+ c) + bc = 20 ⇒ 2(98) + bc = 20 ⇒ bc = −176.

Then, if a = −2, plugging into the first equation gives us b + c = 102, and plugging into the second
equation gives us −2(b+ c) + bc = 20 ⇒ −2(102) + bc = 20 ⇒ bc = 224.
Therefore, the possible values of bc are 224,−176 .

6. [6] In triangle ABC, points M and N are the midpoints of AB and AC, respectively, and points P
and Q trisect BC. Given that A, M , N , P , and Q lie on a circle and BC = 1, compute the area of
triangle ABC.
Proposed by: Rishabh Das

Answer:
√
7

12

Solution: Note that MP ∥ AQ, so AMPQ is an isosceles trapezoid. In particular, we have AM =
MB = BP = PQ = 1

3 , so AB = 2
3 . Thus ABC is isoceles with base 1 and legs 2

3 , and the height from

A to BC is
√
7
6 , so the area is

√
7

12 .
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7. [6] Positive integers a, b, and c have the property that ab, bc, and ca end in 4, 2, and 9, respectively.
Compute the minimum possible value of a+ b+ c.
Proposed by: Derek Liu
Answer: 17

Solution: This minimum is attained when (a, b, c) = (2, 2, 13). To show that we cannot do better,
observe that a must be even, so c ends in 3 or 7. If c ≥ 13, since a and b are even, it’s clear (2, 2, 13) is
optimal. Otherwise, c = 3 or c = 7, in which case bc can end in 2 only when b ends in 8. However, no
eighth power ends in 4, so we would need b ≥ 18 (and a ≥ 2), which makes the sum 2 + 18 + 3 = 23

larger than 17 .

8. [6] Three points, A, B, and C, are selected independently and uniformly at random from the interior
of a unit square. Compute the expected value of ∠ABC.
Proposed by: Akash Das
Answer: 60◦ = π

3

Solution: Since ∠ABC + ∠BCA+ ∠CAB = 180◦ for all choices of A, B, and C, the expected value
is 60◦ .

9. [7] Compute the sum of all positive integers n such that n2 − 3000 is a perfect square.
Proposed by: Holden Mui, Pitchayut Saengrungkongka, Rishabh Das
Answer: 1872
Solution: Suppose n2 − 3000 = x2, so n2 − x2 = 3000. This factors as (n− x)(n+ x) = 3000. Thus,
we have n − x = 2a and n + x = 2b for some positive integers a, b such that ab = 750 and a < b.
Therefore, we have n = a+ b, so the sum will be just sum of divisors of 750 = 2 · 3 · 53, which is

(1 + 2)(1 + 3)(1 + 5 + 25 + 125) = 1872 .

Remark. Problem 1 and 9 have slightly different statements.

1. Compute the sum of all integers n such that n2 − 3000 is a perfect square.
9. Compute the sum of all positive integers n such that n2 − 3000 is a perfect square.

There are 86 teams participating in the Guts rounds. Of these, the distribution of answers to Problem
1 is as follows:



• 49 teams submitted 0, the correct answer.
• 17 teams submitted 1872, the correct answer to Problem 9.
• 3 teams submitted 3744, twice the correct answer to Problem 9.
• 2 teams submitted each of 55 and 744.
• 1 team submitted each of the following answers: 20, 548, 1404, 1586, 1772, 1807, 1817, 1882, 2184,

2746, 4680, 7488, and 9360.

The distribution of answers to Problem 9 is as follows:

• 69 teams submitted 1872, the correct answer.
• 5 teams submitted 3744, twice the correct answer.
• 2 teams submitted 2184.
• 1 team submitted each of the following answers: 55, 205, 548, 1560, 1764, 1772, 1832, 1867, 1893,

and 3634.

10. [7] Alice, Bob, and Charlie are playing a game with 6 cards numbered 1 through 6. Each player is dealt
2 cards uniformly at random. On each player’s turn, they play one of their cards, and the winner is
the person who plays the median of the three cards played. Charlie goes last, so Alice and Bob decide
to tell their cards to each other, trying to prevent him from winning whenever possible. Compute the
probability that Charlie wins regardless.
Proposed by: Ethan Liu

Answer: 2
15

Solution: If Alice has a card that is adjacent to one of Bob’s, then Alice and Bob will play those cards
as one of them is guaranteed to win. If Alice and Bob do not have any adjacent cards, since Charlie
goes last, Charlie can always choose a card that will win.
Let A denote a card that is held by Alice and B denote a card that is held by Bob. We will consider
the ascneding order of which Alice and Bob’s cards are held.
If the ascending order in which Alice and Bob’s cards are held are ABAB or BABA, then Charlie
cannot win. In these 2 cases, there will always be 2 consecutive cards where one is held by Alice and the
other is held by Bob. Therefore, the only cases we need to consider are the ascending orders AABB,
ABBA, and their symmetric cases.
In the case AABB, we must make sure that the larger card Alice holds and the smaller card Bob holds
are not consecutive. Alice can thus have {1, 2}, {2, 3}, or {1, 3}. Casework on what Bob can have yields
5 different combinations of pairs of cards Alice and Bob can hold. Since this applies to the symmetric
case BBAA as well, we get 10 different combinations.
In the case ABBA, we see that Alice’s cards must be {1, 6} and Bob’s cards must be {3, 4}. Considering
the symmetric case BAAB as well, this gives us 2 more combinations.
Thus, there are 12 total possible combinations of Alice’s and Bob’s cards such that Charlie will win
regardless. The total number of ways to choose Alice’s and Bob’s cards is given by

(
6
2

)(
4
2

)
= 90, so the

probability that Charlie is guaranteed to win is 12
90 = 2

15 .

11. [7] Let ABCD be a rectangle such that AB = 20 and AD = 24. Point P lies inside ABCD such that
triangles PAC and PBD have areas 20 and 24, respectively. Compute all possible areas of triangle
PAB.



Proposed by: Pitchayut Saengrungkongka
Answer: 98, 118, 122, 142
Solution:

A

B C

D

P

P

P

PO

There are four possible locations of P as shown in the diagram. Let O be the center. Then, [PAO] = 10
and [PBO] = 12. Thus, [PAB] = [AOB] ± [PAO] ± [PBO] = 120 ± 10 ± 12, giving the four values
98, 118, 122, and 142 .

12. [7] Compute the number of quadruples (a, b, c, d) of positive integers satisfying

12a+ 21b+ 28c+ 84d = 2024.

Proposed by: Rishabh Das
Answer: 2024

Solution: Looking at the equation mod 7 gives a ≡ 3 (mod 7), so let a = 7a′ + 3. Then mod 4 gives
b ≡ 0 (mod 4), so let b = 4b′. Finally, mod 3 gives c ≡ 2 (mod 3), so let c = 3c′ + 2.
Now our equation yields

84a′ + 84b′ + 84c′ + 84d = 2024− 3 · 12− 2 · 28 = 1932 =⇒ a′ + b′ + c′ + d = 23.

Since a, b, c, d are positive integers, we have a′ and c′ are nonnegative and b′ and d are positive. Thus,
let b′′ = b′ + 1 and d′ = d + 1, so a′, b′′, c′, d′ are nonnegative integers summing to 21. By stars and
bars, there are

(
24
3

)
= 2024 such solutions.

13. [9] Mark has a cursed six-sided die that never rolls the same number twice in a row, and all other
outcomes are equally likely. Compute the expected number of rolls it takes for Mark to roll every
number at least once.
Proposed by: Albert Wang

Answer: 149
12

Solution: Suppose Mark has already rolled n unique numbers, where 1 ≤ n ≤ 5. On the next roll,
there are 5 possible numbers he could get, with 6−n of them being new. Therefore, the probability of
getting another unique number is 6−n

5 , so the expected number of rolls before getting another unique
number is 5

6−n . Since it always takes 1 roll to get the first number, the expected total number of rolls



is 1 + 5
5 + 5

4 + 5
3 + 5

2 + 5
1 = 149

12 .

14. [9] Compute the smallest positive integer such that, no matter how you rearrange its digits (in base
ten), the resulting number is a multiple of 63.
Proposed by: Arul Kolla
Answer: 111 888

Solution: First, the number must be a multiple of 9 and 7. The first is easy to check and holds for
all permutations. Note that when two adjacent digits a and b are swapped, the number changes by
9(a − b) · 10k (we disregard sign), so 9(a − b) must also be a multiple of 63 for all digits a and b. In
particular, this is sufficient, since a permutation can be represented as a series of transpositions.
This means that a − b must be a multiple of 7 for all digits a and b, so either all digits are equal or
they are in {0, 7}, {1, 8}, or {2, 9}. We find the minimum for each case separately.
We first provide the following useful fact: the first repunit (numbers 1, 11, 111, …) that is a multiple
of 7 is 111111. This is because 10 mod 7 = 3, and 3 is a generator modulo 7 (of course, you can just
compute the powers of 3 by hand, and it will not take much longer).
If a number k · 1 . . . 1 is a multiple of 63, then either k or 1 . . . 1 is a multiple of 7; if it is k, then it’s
clear that we need 777 777 777 to make the sum a multiple of 9. If 1 . . . 1 is a multiple of 7, then it is
at least 111 111, then to make a multiple of 9, we need 333 333.
If the only digits are 7 and 0, then we need at least nine sevens to make the digit sum a multiple of
nine, which has more digits than 333 333.
If the only digits are 8 and 1, then we can note that since 8 and 1 are both 1 (mod 7), these numbers
are equivalent to the repunits modulo 7, so such numbers have at least six digits. The best such
six-digit number with digits summing to a multiple of 9 is 111 888, which is our new candidate.
If the only digits are 9 and 2, then by analogous logic such numbers have at least six digits. But the
smallest such number is 999 999, which is not better.
So our best answer is 111 888 . It works.

15. [9] Let a ⋆ b = ab− 2. Compute the remainder when (((579 ⋆ 569) ⋆ 559) ⋆ · · · ⋆ 19) ⋆ 9 is divided by 100.
Proposed by: Rishabh Das
Answer: 29

Solution: Note that

(10a+ 9) ⋆ (10b+ 9) = (100ab+ 90a+ 90b+ 81)− 2 ≡ 90(a+ b) + 79 (mod 100),

so throughout our process all numbers will end in 9, so we will just track the tens digit. Then the ”new
operation” is

a † b ≡ −(a+ b) + 7 mod 10,

where a and b track the tens digits. Now

(a † b) † c ≡ (−(a+ b) + 7) † c ≡ a+ b− c mod 10.

Thus, our expression has tens digit congruent to

−0 + 1− 2 + 3− · · · − 54 + 55− 56− 57 + 7 ≡ −28− 57 + 7 ≡ 2 mod 10,

making the answer 29 .



16. [9] Let ABC be an acute isosceles triangle with orthocenter H. Let M and N be the midpoints of
sides AB and AC, respectively. The circumcircle of triangle MHN intersects line BC at two points
X and Y . Given XY = AB = AC = 2, compute BC2.
Proposed by: Andrew Wen

Answer: 2(
√
17− 1)

Solution:

B C

A

H
M N

D XY

Let D be the foot from A to BC, also the midpoint of BC. Note that DX = DY = MA = MB =
MD = NA = NC = ND = 1. Thus, MNXY is cyclic with circumcenter D and circumradius 1. H
lies on this circle too, hence DH = 1.
If we let DB = DC = x, then since △HBD ∼ △BDA,

BD2 = HD ·AD =⇒ x2 =
√
4− x2 =⇒ x4 = 4− x2 =⇒ x2 =

√
17− 1

2
.

Our answer is BC2 = (2x)2 = 4x2 = 2(
√
17− 1)

17. [11] The numbers 1, 2, . . . , 20 are put into a hat. Claire draws two numbers from the hat uniformly
at random, a < b, and then puts them back into the hat. Then, William draws two numbers from the
hat uniformly at random, c < d.
Let N denote the number of integers n that satisfy exactly one of a ≤ n ≤ b and c ≤ n ≤ d. Compute
the probability N is even.
Proposed by: Rishabh Das

Answer: 181
361

Solution: The number of integers that satisfy exactly one of the two inequalities is equal to the
number of integers that satisfy the first one, plus the number of integers that satisfy the second one,
minus twice the number of integers that satisfy both. Parity-wise, this is just the number of integers
that satisfy the first one, plus the number of integers that satisfy the second one.



The number of integers that satisfy the first one is b − a + 1. The probability this is even is 10
19 , and

odd is 9
19 . This means the answer is

102 + 92

192
=

181

361
.

18. [11] An ordered pair (a, b) of positive integers is called spicy if gcd(a + b, ab + 1) = 1. Compute the
probability that both (99, n) and (101, n) are spicy when n is chosen from {1, 2, . . . , 2024!} uniformly
at random.
Proposed by: Pitchayut Saengrungkongka

Answer: 96
595

Solution: We claim that (a, b) is spicy if and only if both gcd(a+1, b−1) = 1 and gcd(a−1, b+1) = 1.
To prove the claim, we note that

gcd(a+ b, ab+ 1) = gcd(a+ b, b(−b) + 1) = gcd(a+ b, b2 − 1).

Hence, we have

gcd(a+ b, ab+ 1) = 1 ⇐⇒ gcd(a+ b, b2 − 1) = 1

⇐⇒ gcd(a+ b, b− 1) = 1 and gcd(a+ b, b+ 1) = 1

⇐⇒ gcd(a+ 1, b− 1) = 1 and gcd(a− 1, b+ 1) = 1,

proving the claim.
Thus, n works if and only if all following four conditions hold:

• gcd(n+ 1, 98) = 1, or equivalently, n is neither −1 (mod 2) nor −1 (mod 7);
• gcd(n− 1, 100) = 1, or equivalently, n is neither 1 (mod 2) nor 1 (mod 5);
• gcd(n+ 1, 100) = 1, or equivalently, n is neither −1 (mod 2) nor −1 (mod 5); and
• gcd(n− 1, 102) = 1, or equivalently, n is neither 1 (mod 2), 1 (mod 3), nor 1 (mod 17).

Thus, there are 1, 2, 3, 6, 17 possible residues modulo 2, 3, 5, 7, and 17, respectively. The residues are
uniformly distributed within {1, 2, . . . , 2024!}. Hence, the answer is 1

2 · 2
3 · 3

5 · 6
7 · 16

17 = 96
595 .

19. [11] Let A1A2 . . . A19 be a regular nonadecagon. Lines A1A5 and A3A4 meet at X. Compute ∠A7XA5.
Proposed by: Nithid Anchaleenukoon

Answer: 1170
19

◦
= 13π

38

Solution:



A1

A2

A3

A4

A5
A6

A7

A8

A9

X

Inscribing the nondecagon in a circle, note that

∠A3XA5 =
1

2
(Â1A3 − Â4A5) =

1

2
Â5A3A4 = ∠A5A3X.

Thus A5X = A5A3 = A5A7, so

∠A7XA5 = 90◦ − 1

2
∠XA5A7 =

1

2
∠A1A5A7

=
1

4
Â1A8A7 =

1

4
· 13
19

· 360◦ =
1170

19

◦
.

20. [11] Compute 4
√
55083 + 56253 + 57423, given that it is an integer.

Proposed by: Rishabh Das
Answer: 855

Solution: Let a = 5625 = 752 and b = 117. Then we have

55083 + 52653 + 57423 = (a− b)3 + a3 + (a+ b)3 = 3a3 + 6ab2 = 3a(a2 + 2b2).

We have 3a = 33 · 54, so a2 + 2b2 = 34 · (6252 + 2 · 192) should be 3 times a fourth power. This means

6252 + 2 · 192 = 3x4

for some integer x. By parity, x must be odd, and also x2
√
3 ≈ 625. Approximating

√
3 even as 2, we

get x should be around 19. Then x = 17 is clearly too small, and x = 21 is too big. (You can also
check mod 7 for this latter one.) Thus, x = 19. The final answer is then

32 · 5 · 19 = 855 .

21. [12] Kelvin the frog currently sits at (0, 0) in the coordinate plane. If Kelvin is at (x, y), either he can
walk to any of (x, y + 1), (x + 1, y), or (x + 1, y + 1), or he can jump to any of (x, y + 2), (x + 2, y)
or (x + 1, y + 1). Walking and jumping from (x, y) to (x + 1, y + 1) are considered distinct actions.
Compute the number of ways Kelvin can reach (6, 8).
Proposed by: Derek Liu



Answer: 1831830 = 610 ·
(
14
6

)
Solution: Observe there are

(
14
6

)
= 3003 up-right paths from (0, 0) to (6, 8), each of which are 14

steps long. Any two of these steps can be combined into one: UU , RR, and RU as jumps, and UR as
walking from (x, y) to (x + 1, y + 1). The number of ways to combine steps is the number of ways to
group 14 actions into singles and consecutive pairs, which is F15 = 610. Every path Kelvin can take
can be represented this way, so the answer is 610 · 3003 = 1831830 .

22. [12] Let x < y be positive real numbers such that
√
x+

√
y = 4 and

√
x+ 2 +

√
y + 2 = 5.

Compute x.
Proposed by: Ethan Liu

Answer: 49
36

Solution: Adding and subtracting both equations gives
√
x+ 2 +

√
x+

√
y + 2 +

√
y = 9

√
x+ 2−

√
x+

√
y + 2−√

y = 1

Substitute a =
√
x+

√
x+ 2 and b =

√
y +

√
y + 2. Then since (

√
x+ 2+

√
x)(

√
x+ 2−

√
x) = 2, we

have
a+ b = 9

2

a
+

2

b
= 1

Dividing the first equation by the second one gives

ab = 18, a = 3, b = 6

Lastly,
√
x =

√
x+2+

√
x−(

√
x+2−

√
x)

2 =
3− 2

3

2 = 7
6 , so x = 49

36 .

23. [12] Let ℓ and m be two non-coplanar lines in space, and let P1 be a point on ℓ. Let P2 be the point
on m closest to P1, P3 be the point on ℓ closest to P2, P4 be the point on m closest to P3, and P5 be
the point on ℓ closest to P4. Given that P1P2 = 5, P2P3 = 3, and P3P4 = 2, compute P4P5.
Proposed by: Luke Robitaille

Answer:
√
39
4

Solution: The figure below shows the situation of the problem when projected appropriately, which
will be explained later.



P1

P3

P5

P2

P4

√
25

−
h
2

√
9−

h 2

√
4
−
h
2√

a 2−
h 2

ℓ

m

Let a be the answer. By taking the z-axis to be the cross product of these two lines, we can let the lines
be on the planes z = 0 and z = h, respectively. Then, by projecting onto the xy-plane, we get the above
diagram. The projected lengths of the first four segments are

√
25− h2,

√
9− h2, and

√
4− h2, and√

a2 − h2. By similar triangles, these lengths must form a geometric progression. Therefore, 25 − h2,
9− h2, 4− h2, a2 − h2 is a geometric progression. By taking consecutive differences, 16, 5, 4− a2 is a
geometric progression. Hence, 4− a2 = 25

16 =⇒ a =
√
39
4 .

24. [12] A circle is tangent to both branches of the hyperbola x2−20y2 = 24 as well as the x-axis. Compute
the area of this circle.
Proposed by: Karthik Venkata Vedula
Answer: 504π

Solution 1:



ω

x

y

Invert about the unit circle centered at the origin. ω turns into a horizontal line, and the hyperbola
turns into the following:

x2

(x2 + y2)2
− 20y2

(x2 + y2)2
= 24 =⇒ x2 − 20y2 = 24(x2 + y2)2.

=⇒ 24x4 + (48y2 − 1)x2 + 24y4 + 20y2 = 0

=⇒ (48y2 − 1)2 ≥ 4(24)(24y4 + 20y2)

=⇒ 1− 96y2 ≥ 1920y2

=⇒ y ≤
√
1/2016.

This means that the horizontal line in question is y =
√

1/2016. This means that the diameter of the
circle is the reciprocal of the distance between the point and line, which is

√
2016, so the radius is√

504, and the answer is 504π .

Solution 2: Let a be the y-coordinate of both tangency points to the hyperbola. Then, the equation
of the circle must be in the form

x2 − 20y2 + c(y − a)2 = 24.

Comparing the y2-coefficient, we see that c = 21. Moreover, we need it to pass through (0, 0), so
21a2 = 24. Thus, the equation of the circle is

x2 + y2 − 42ay + 21a2 = 24 =⇒ x2 + (y − 21a)2 = (21a)2,

so the radius is 21a, and the area is (441a2)π = 504π .

25. [14] Point P is inside a square ABCD such that ∠APB = 135◦, PC = 12, and PD = 15. Compute
the area of this square.
Proposed by: Pitchayut Saengrungkongka

Answer: 123 + 6
√
119

Solution:



A B

CD

P

Q

x y
y

x

√
2y

12

45◦

135◦

Let x = AP and y = BP . Rotate △BAP by 90◦ around B to get △BCQ. Then, △BPQ is right-
isosceles, and from ∠BQC = 135◦, we get ∠PQC = 90◦. Therefore, by Pythagorean’s theorem,
PC2 = x2 + 2y2. Similarly, PD2 = y2 + 2x2.
Thus, y2 = 2PC2−PD2

3 = 21, and similarly x2 = 102 =⇒ xy = 3
√
238.

Thus, by the Law of Cosines, the area of the square is

AB2 = AP 2 +BP 2 − 2 cos(135◦)(AP )(BP )

= x2 + y2 +
√
2xy

= 123 + 6
√
119 .

26. [14] It can be shown that there exists a unique polynomial P in two variables such that for all positive
integers m and n,

P (m,n) =

m∑
i=1

n∑
j=1

(i+ j)7.

Compute P (3,−3).
Proposed by: Pitchayut Saengrungkongka
Answer: −2445

Solution: Note that for integers m > 0, n > 1,

P (m,n)− P (m,n− 1) =

m∑
i=1

(i+ n)7.

For any given positive integer m, both sides are a polynomial in n, so they must be equal as polynomials.
In particular,

P (3, x)− P (3, x− 1) =

3∑
i=1

(i+ x)7 = (x+ 1)7 + (x+ 2)7 + (x+ 3)7

for all real x. Moreover, P (3, 1)− P (3, 0) = P (3, 1) =⇒ P (3, 0) = 0. Then

P (3,−3) = P (3, 0)− (17 + 27 + 37)− (07 + 17 + 27)− ((−1)7 + 07 + 17)

= −37 − 2 · 27 − 2 = −2445 .



27. [14] A deck of 100 cards is labeled 1, 2, . . . , 100 from top to bottom. The top two cards are drawn;
one of them is discarded at random, and the other is inserted back at the bottom of the deck. This
process is repeated until only one card remains in the deck. Compute the expected value of the label
of the remaining card.
Proposed by: Albert Wang

Answer: 467
8

Solution 1: Note that we can just take averages: every time you draw one of two cards, the EV of
the resulting card is the average of the EVs of the two cards. This average must be of the form

2• · 1 + 2• · 2 + 2• · 3 + · · ·+ 2• · 100

where the 2•s add up to 1. Clearly, the cards further down in the deck get involved in one less layer of
averaging, and therefore 1 through 72 are weighted 2−7 while the rest are weighted 2−6. To compute
the average now, we just add it up to get 467

8 .

Solution 2: We see that in a deck with 2n cards, that after repeating the process 2n−1 times, that
each card has a chance of 1

2 of remaining in the deck. This means that the average of the cards in the
deck doesn’t change between 2n by 2n−1 cards. Thus, by repeating this process, we determine that
the expected value of the last card is the average of all cards whenever we start with 2n cards.
Suppose we instead start with 27 = 128 cards in the following order:

73, 73, 74, 74, . . . , 100, 100, 1, 2, 3, . . . , 72.

Thus, after 28 steps, we will be left with the original configuration. Since a power of 2 cards are in the
deck, we expect that the final card will be the average of these numbers. This is 467

8 .

28. [14] Given that the 32-digit integer

64 312 311 692 944 269 609 355 712 372 657

is the product of 6 consecutive primes, compute the sum of these 6 primes.
Proposed by: Derek Liu
Answer: 1200974
Solution: Because the product is approximately 64 · 1030, we know the primes are all around 200000.
Say they are 200000 + xi for i = 1, . . . , 6.

By expanding
∏6

i=1(200000 + xi) as a polynomial in 200000, we see that

31231 · 1025 = 2000005(x1 + · · ·+ x6)

plus the carry from the other terms. Note that 31231 = 975 · 32 + 31, so x1 + · · ·+ x6 ≤ 975.

Thus,
16(x1x2 + x1x3 + · · ·+ x5x6) ≤ 16 · 5

12
(x1 + · · ·+ x6)

2 <
20

3
· 10002 < 67 · 105,

so the carry term from 2000004(x1x2+ · · ·+x5x6) is at most 67 · 1025. The other terms have negligible
carry, so it is pretty clear x1 + · · ·+ x6 > 972, otherwise the carry term would have to be at least

31231 · 1025 − 2000005(972) = 127 · 1025.



It follows that x1 + · · ·+ x6 lies in [973, 975], so the sum of the primes, 6 · 200000+ (x1 + · · ·+ x6), lies
in [1200973, 1200975].

As these primes are all greater than 2, they are all odd, so their sum is even. Thus it must be 1200974 .

29. [16] For each prime p, a polynomial P (x) with rational coefficients is called p-good if and only if there
exist three integers a, b, and c such that 0 ≤ a < b < c < p

3 and p divides all the numerators of P (a),
P (b), and P (c), when written in simplest form. Compute the number of ordered pairs (r, s) of rational
numbers such that the polynomial x3 + 10x2 + rx+ s is p-good for infinitely many primes p.
Proposed by: Pitchayut Saengrungkongka
Answer: 12
Solution: By Vieta, the sum of the roots is −10 (mod p). However, since the three roots are less than
p/3, it follows that the roots are (p− a′)/3, (p− b′)/3, (p− c′)/3, where there are finitely many choices
a′ < b′ < c′. By pigeonhole, one choice, say (u, v, w) must occur for infinitely many p. We then get
that the roots of P are −u/3, −v/3, and −w/3. Moreover, we must have that u, v, w are all 1 (mod 3)
or all 2 (mod 3), and by Vieta, we have u+ v + w = 30.
The polynomial is then uniquely determined by u, v, w. Thus, it suffices to count triples u < v < w of
positive integers such that u, v, w are all 1 (mod 3) or all 2 (mod 3) and that u+ v+w = 30. It’s not
very hard to list them all now.
When u, v, w ≡ 1 (mod 3), there are 7 triples: (1, 4, 25), (1, 7, 22), (1, 10, 19), (1, 13, 16), (4, 7, 19),
(4, 10, 16), and (7, 10, 13).
When u, v, w ≡ 2 (mod 3), there are 5 triples: (2, 5, 23), (2, 8, 20), (2, 11, 17), (5, 8, 17), and (5, 11, 14).
Hence, the answer is 7 + 5 = 12 .

30. [16] Let ABC be an equilateral triangle with side length 1. Points D, E, F lie inside triangle ABC
such that A, E, F are collinear, B, F , D are collinear, C, D, E are collinear, and triangle DEF is
equilateral. Suppose that there exists a unique equilateral triangle XY Z with X on side BC, Y on
side AB, and Z on side AC such that D lies on side XZ, E lies on side Y Z, and F lies on side XY .
Compute AZ.
Proposed by: Jaedon Whyte, Maxim Li

Answer: 1
1+ 3√2

Solution:



A

B CX

O

Z

Y

D

E

F

First, note that point X can be constructed from intersection of ⊙(DOF ) and side BC. Thus, if there
is a unique equilateral triangle, then we must have that ⊙(DOF ) is tangent to BC. Furthermore,
⊙(DOF ) is tangent to DE, so by equal tangents, we have CD = CX.
We now compute the answer. Let x = AZ = CX = CD = BF . Then, by power of point,

BF ·BD = BX2 =⇒ BD =
(1− x)2

x
.

Thus, by law of cosine on △BDC, we have that

x2 +

(
(1− x)2

x

)2

+ x · (1− x)2

x
= 1

x2 +
(1− x)4

x2
+ (1− x)2 = 1

(1− x)4

x2
= 2x(1− x)

1− x

x
=

3
√
2

x =
1

1 + 3
√
2
.

31. [16] Ash and Gary independently come up with their own lineups of 15 fire, grass, and water monsters.
Then, the first monster of both lineups will fight, with fire beating grass, grass beating water, and water
beating fire. The defeated monster is then substituted with the next one from their team’s lineup; if
there is a draw, both monsters get defeated.
Gary completes his lineup randomly, with each monster being equally likely to be any of the three
types. Without seeing Gary’s lineup, Ash chooses a lineup that maximizes the probability p that his
monsters are the last ones standing. Compute p.
Proposed by: Albert Wang

Answer: 1− 215

315

Solution: First, we show Ash cannot do better. Notice there is a 215

315 chance that Gary’s i-th monster
ties or defeats Ash’s i-th monster for each i. If this is the case, Ash cannot win, as Ash’s i-th monster



will always be defeated by Gary’s i-th monster, if not sooner. Thus, Ash wins with probability at most
1− 215

315 . It remains to show this is achievable.
Ash uses the lineup fire-grass-water repeated 5 times. Then, none of Gary’s monsters can defeat more
than one monster in Ash’s lineup, so Ash will win unless Gary manages to take down exactly one
monster with each of his. In particular, this means the i-th monster Gary has must tie or defeat Ash’s
i-th monster, which occurs with 2

3 chance with each i. Thus this construction achieves the answer of

1− 215

315 .

32. [16] Over all pairs of complex numbers (x, y) satisfying the equations

x+ 2y2 = x4 and y + 2x2 = y4,

compute the minimum possible real part of x.
Proposed by: Jaedon Whyte

Answer: 3

√
1−

√
33

2

Solution 1: Note the following observations:

(a) if (x, y) is a solution then (ωx, ω2y) is also a solution if ω3 = 1 and ω ̸= 1.
(b) we have some solutions (x, x) where x is a solution of x4 − 2x2 − x = 0.

These are really the only necessary observations and the first does not need to be noticed immediately.
Indeed, we can try to solve this directly as follows: first, from the first equation, we get y2 = 1

2 (x
4−x),

so inserting this into the second equation gives

1

4
(x4 − x)2 − 2x2 = y((

x4 − x
)2 − 8x2

)2

− 8x4 + 8x = 0(
x8 − 2x5 − 7x2

)2 − 8x4 + 8x = 0

x16 + · · ·+ 41x4 + 8x︸ ︷︷ ︸
P (x)

= 0

By the second observation, we have that x(x3 − 2x− 1) should be a factor of P . The first observation
gives that (x3 − 2ωx − 1)(x3 − 2ω2x − 1) should therefore also be factor. Now (x3 − 2ωx − 1)(x3 −
2ω2x − 1) = x6 + 2x4 − 2x3 + 4x2 − 2x + 1 since ω and ω2 are roots of x2 + x + 1. So now we see
that the last two terms of the product of all of these is −5x4 − x. Hence the last two terms of the
polynomial we get after dividing out should be −x3 − 8, and given what we know about the degree
and the fact that everything is monic, the quotient must be exactly x6 − x3 − 8 which has roots being
the cube roots of the roots to x2 − x− 8, which are 3

√
1±

√
33

2 . Now x3 − 2x− 1 is further factorable as
(x− 1)(x2 − x− 1) with roots 1, 1±

√
5

2 so it is not difficult to compare the real parts of all roots of P ,
especially since 5 are real and non-zero, and we have that Re(ωx) = − 1

2x if x ∈ R. We conclude that

the smallest is 3

√
1−

√
33

2 .

Solution 2: Subtracting the second equation from the first, we get:

(y + 2x2)− (x+ 2y2) = y4 − x4 =⇒

(x− y) + 2(x2 − y2) = (x2 − y2)(x2 + y2) =⇒



(x− y)(1− (x+ y)(x2 + y2 + 2)) = 0

Subtracting y times the first equation from x times the second, we get:

(xy + 2y3)− (xy + 2x3) = x4y − xy4 =⇒

2(y3 − x3) = xy(x3 − y3) =⇒
(x3 − y3)(2 + xy) = 0

Subtracting y2 times the second equation from x2 times the first, we get:

(x3 + 2x2y2)− (y3 + 2x2y2) = x6 − y6 =⇒

x3 − y3 = (x3 + y3)(x3 − y3) =⇒
(x3 − y3)(1− x3 − y3) = 0

We have three cases.
Case 0. x = 0 Thus, (x, y) = (0, 0) is the only valid solution.
Case 1. x = ωy for some third root of unity ω. Thus, y2 = ω4x2 = ωx2

x+ 2y2 = x4 =⇒
x+ 2ωx2 = x4 =⇒
x(1 + ω)(2− ωx2) = 1

Note that x = −ω is always a solution to the above, and so we can factor as:

x3 + 2(1 + ω)x− 1 = 0

(x+ ω)(x2 − ωx− ω2) = 0

and so the other solutions are of the form:

x =
1±

√
5

2
· ω

for the third root of unity. The minimum real part in this case is − 1+
√
5

2 when ω = 1.
Case 2. Since x3 − y3 ̸= 0, we have xy = −2 and x3 + y3 = 1.

Thus, x3 − y3 =
√
(x3 + y3)2 − 4(xy)2 = ±

√
33 =⇒ x3 =

(
1±

√
33

2

)
This yields the minimum solution of x =

(
1−

√
33

2

)1/3

as desired. This is satisfied by letting

y =
(

1+
√
33

2

)1/3

.

33. [20] Let p denote the proportion of teams, out of all participating teams, who submitted a negative
response to problem 5 of the Team round (e.g. “there are no such integers”). Estimate P = ⌊10000p⌋.
An estimate of E earns max(0, ⌊20− |P − E|/20⌋) points.
If you have forgotten, problem 5 of the Team round was the following: “Determine, with proof, whether
there exist positive integers x and y such that x+ y, x2 + y2, and x3 + y3 are all perfect squares.”
Proposed by: Arul Kolla
Answer: 5568
Solution: Of the 88 teams competing in this year’s Team round, 49 of them answered negatively,
9 (correctly) provided a construction, 16 answered ambiguously or did not provide a construction, and
the remaining 14 teams did not submit to problem 5. Thus p = 49

88 ≈ 0.5568.



34. [20] Estimate the number of positive integers n ≤ 106 such that n2+1 has a prime factor greater than
n.

Submit a positive integer E. If the correct answer is A, you will receive max

(
0,

⌊
20 ·min

(
E
A , 106−E

106−A

)5

+ 0.5

⌋)
points.
Proposed by: Pitchayut Saengrungkongka
Answer: 757575
Solution: Let N denote 106. We count by summing over potential prime factors p.
For any prime p > 2, we have that p | n2 + 1 for two values of n if p ≡ 1 (mod 4), and zero values
otherwise. Pretending these values are equally likely to be any of 1, . . . , p, we expect the number of n
corresponding to a 1 (mod 4) prime to be min

(
2, 2N

p

)
.

The number of primes up to x is, by the Prime Number Theorem x
log x . Assuming around half of the

prime numbers are 1 (mod 4), we on average expect some x to be a 1 (mod 4) prime 1
2 log x of the time.

Approximating by an integral over potential primes x from 1 to N2, using our approximations, gives∫ N2

1

min

(
2,

2N

x

)
· dx

2 log x
.

We now approximately calculate this integral as follows:∫ N2

1

min

(
2,

2N

x

)
· dx

2 log x
=

∫ N

1

dx

log x
+

∫ N2

N

N

x log x
dx

≈ N

logN
+N(log log(N2)− log logN)

=
N

logN
+N log 2.

Here, for the first integral, we estimate log x on [1, N ] by logN , and for the second integral, we use
that the antiderivative of 1

x log x is log log x.
Using log 2 ≈ 0.7, one can estimate

logN = 2 log 1000 ≈ 20 log 2 ≈ 14

giving a final estimate of
106/14 + 106 · 0.7 = 771428.

This estimate yields a score of 15. If one uses the closer estimate log 2 ≈ 0.69, one gets the final
estimate of 761428, yielding a score of 18.
Here is a code using sympy to calculate the final answer:
from sympy.ntheory import factorint
cnt = 0
for n in range(1,10**6+1):

if max(factorint(n**2+1, multiple=True)) > n:
cnt += 1

print(cnt)

35. [20] Barry picks infinitely many points inside a unit circle, each independently and uniformly at
random, P1, P2, . . . . Compute the expected value of N , where N is the smallest integer such that
PN+1 is inside the convex hull formed by the points P1, P2, . . . , PN .



Submit a positive real number E. If the correct answer is A, you will receive ⌊100 ·max(0.2099− |E −A|, 0)⌋
points.
Proposed by: Albert Wang, Rishabh Das
Answer: 6.54

Solution: Clearly, N ≥ 3, and let’s scale the circle to have area 1. We can see that the probability
to not reach N = 4 is equal to the probability that the fourth point is inside the convex hull of the
past three points. That is, the probability is just one minus the expected area of those N points. The
area of this turns out to be really small, and is around 0.074, and so (1 − 0.074) of all sequences of
points make it to N = 4. The probability to reach to the fifth point from there should be around
(1 − 0.074)(1 − 0.074 · 2), as any four points in convex configuration can be covered with 2 triangles.
Similarly, the chance of reaching N = 6 should be around (1− 0.074)(1− 0.074 · 2)(1− 0.074 · 3), and
so on. Noting that our terms eventually decay to zero around term 1/0.074 = 13, our answer should
be an underestimate. In particular, we get

3 + (1− 0.074)(1 + (1− 0.074 · 2)(1 + (1− 0.074 · 3)(1 + · · · ))) ≈ 6.3.

Guessing anything slightly above this lower bound should give a positive score.
Here is a Python code that simulates the result.
from random import randrange,getrandbits
import itertools, math
from tqdm import tqdm
import numpy as np

DEBUG = False

def unit_circle_pt():
while True:

x = randrange(-(2**32),2**32+1)
y = randrange(-(2**32),2**32+1)
if x*x + y*y < 2**64:

return (x,y)

def area_of_triangle(p1, p2, p3):
return abs((p2[0] - p1[0])*(p3[1] - p2[1]) - (p2[1] - p1[1])*(p3[0] - p2[0]))

def pt_inside_polygon(point, polygon):
# point is a pair
# polygon is an angle -sorted list of points that are the vertices of a convex polygon in

some order

# area of polygon

# plot the polygon and the point
if DEBUG:

import matplotlib.pyplot as plt
# plot the big circle
circle = plt.Circle((0,0), 2**32, color='b', fill=False)
# fix view to circle
plt.xlim(-2**32,2**32)
plt.ylim(-2**32,2**32)
plt.gca().add_artist(circle)
# make the window to scale
plt.gca().set_aspect('equal', adjustable='box')
plt.plot([x for x,_ in polygon], [y for _,y in polygon])
plt.scatter([point[0]], [point[1]])
plt.show()

area = 0
for i in range(1, len(polygon)-1):

# add on area between points 0, i, i+1
area += area_of_triangle(polygon[0], polygon[i], polygon[i+1])



# point is inside polygon if the area of the triangles formed by the point and each edge
of the polygon sum to the area of the

polygon
area_sum = 0
for i in range(len(polygon)):

# add on area between points point , polygon[i], polygon[(i+1)%len(polygon)]
area_sum += area_of_triangle(point, polygon[i], polygon[(i+1)%len(polygon)])

return area_sum == area

def convex_hull(points):
# sort by x, then y
points = sorted(points, key=lambda x: (x[0], x[1]))
# graham scan

# find the lowest point
lowest = points[0]
for p in points:

if p[1] < lowest[1]:
lowest = p

# sort by angle
points = sorted(points, key=lambda x: (math.atan2(x[1]-lowest[1], x[0]-lowest[0]), -x[1]

, x[0]))
# remove duplicates
points = list(k for k,_ in itertools.groupby(points))
# stack to hold the points
stack = []
for p in points:

while len(stack) > 1 and (stack[-1][0]-stack[-2][0])*(p[1]-stack[-2][1]) - (stack[-1
][1]-stack[-2][1])*(p[0]-stack[-2][
0]) <= 0:

stack.pop()
stack.append(p)

return stack

def pulse(horizon=1000):
cur = [unit_circle_pt() for _ in range(3)]

for N in range(3, horizon):
pt = unit_circle_pt()
if pt_inside_polygon(pt, cur):

return N
cur = convex_hull(cur + [pt])

trials = 1000
blocks = 100000
cur_trials = 0
cur_sum = 0
results = []

for block in range(trials):
for _ in tqdm(range(blocks)):

results.append(pulse())
cur_trials += blocks
mean = np.mean(results)
stddev = np.std(results)
z = 5.0
ci = (mean - z*stddev/np.sqrt(cur_trials), mean + z*stddev/np.sqrt(cur_trials))
print(block+1, mean, stddev, ci)

36. [20] Let ABC be a triangle. The following diagram contains points P1, P2, . . . , P7, which are the
following triangle centers of triangle ABC in some order:



• the incenter I;
• the circumcenter O;
• the orthocenter H;
• the symmedian point L, which is the intersections of the reflections of B-median and C-median

across angle bisectors of ∠ABC and ∠ACB, respectively;
• the Gergonne point G, which is the intersection of lines from B and C to the tangency points of

the incircle with AC and AB, respectively;
• the Nagel point N , which is the intersection of line from B to the tangency point between B-

excircle and AC, and line from C to the tangency point between C-excircle and AB; and
• the Kosnita point K, which is the intersection of lines from B and C to the circumcenters of

triangles AOC and AOB, respectively.

P6

P2

P7

P3

P4 P5

P1

Note that the triangle ABC is not shown. Compute which triangle centers {I,O,H,L,G,N,K}
corresponds to Pk for k ∈ {1, 2, 3, 4, 5, 6, 7}.
Your answer should be a seven-character string containing I, O, H, L, G, N , K, or X for blank. For
instance, if you think P2 = H and P6 = L, you would answer XHXXXLX. If you attempt to identify
n > 0 points and get them all correct, then you will receive

⌈
(n− 1)5/3

⌉
points. Otherwise, you will

receive 0 points.
Proposed by: Kevin Zhao, Pitchayut Saengrungkongka
Answer: KOLINGH

Solution: Let G′ be the centroid of triangle ABC. Recall the following.

• Points O,G′,H lie on Euler’s line of △ABC with OG′ : G′H = 1 : 2.
• Points I,G′, N lie on Nagel’s line of △ABC with IG′ : G′N = 1 : 2.

Thus, OI ∥ HN with OI : HN = 1 : 2. Therefore, we can detect parallel lines with ratio 2 : 1 in
the figure. The only possible pairs are P2P4 ∥ P7P5. Therefore, there are two possibilities: (P2, P7)
and (P4, P5) must be (O,H) and (I,N) in some order. Intuitively, H should be further out, so it’s
not unreasonable to guess that P2 = O, P7 = H, P4 = I, and P5 = N . Alternatively, perform the
algorithm below with the other case to see if it fails.
To identify the remaining points, we recall that the isogonal conjugate of G and N both lie on OI
(they are insimilicenter and exsimilicenter of incircle and circumcircle, respectively). Thus, H,G,N, I
lie on isogonal conjugate of OI, known as the Feuerbach’s Hyperbola. It’s also known that OI is
tangent to this line, and this hyperbola have perpendicular asymptotes.
Using all information in the above paragraph, we can eyeball a rectangular hyperbola passing through
H,G,N, I and is tangent to OI. It’s then not hard to see that P6 = G.
Finally, we need to distinguish between symmedian and Kosnita points. To do that, recall that Kosnita
point is isogonal conjugate of the nine-point center (not hard to show). Thus, H,L,K,O lies on isogonal
conjugate of OH, which is the Jerabek’s Hyperbola. One can see that H,L,K,O lies on the same



branch. Moreover, they lie on this hyperbola in this order because the isogonal conjugates (in order)
are O, centroid, nine-point center, and H, which lies on OH in this order. Using this fact, we can
identity P5 = L and P1 = K, completing the identification.
The following is the diagram with the triangle ABC.

A

B C

P6

P2

P7

P3

P4 P5

P1

Here is the Asymptote code that generates the diagram in the problem.
import olympiad;
import geometry;
size(7.5cm);
pair A = (0.5,3.2);
pair B = (0,0);
pair C = (4,0);
pair O = circumcenter(triangle(A,B,C));
pair H = orthocentercenter(triangle(A,B,C));
pair L = symmedian(triangle(A,B,C));
pair Ge = gergonne(triangle(A,B,C));
pair I = incenter(triangle(A,B,C));
pair Na = A+B+C - 2I;
pair K = extension(A, circumcenter(B,O,C), B, circumcenter(A,O,C));

dot("$P_6$",Ge,dir(-90));
dot("$P_2$",O,dir(90));
dot("$P_7$",H,dir(90));
dot("$P_3$",L,dir(135));
dot("$P_4$",I,dir(-45));
dot("$P_5$",Na,dir(-90));
dot("$P_1$",K,dir(90));


