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1. [6] In an empty 100 × 100 grid, 300 cells are colored blue, 3 in each row and each column. Compute
the largest positive integer k such that you can always recolor k of these blue cells red so that no
contiguous 2× 2 square has four red cells.

Proposed by: Arul Kolla

Answer: 250

Solution: We first prove the lower bound. We can recolor all three blue cells in odd rows, and the
first and third blue cells in even rows.

A 2 × 2 square must cover two adjacent cells in an even row. Therefore, it’s impossible for there to
exist a red 2 × 2 square in our recoloring, because coloring the first and third cell in each even row
guarantees that no two adjacent cells are both red in that row.

This colors 50× 3 + 50× 2 = 250 cells.

For the upper bound, consider the configuration with 50 disjoint 2× 2 squares colored blue along the
diagonal. Then, color the remaining 100 cells more or less arbitrarily (for instance, the other main
diagonal).

For each 2× 2 blue square, we can color at most 3 of those cells red. Therefore, we can recolor at most
3 · 50 + 100 = 250 cells.

2. [7] Suppose that a, b, c, and d are real numbers such that a+ b+ c+ d = 8. Compute the minimum
possible value of

20(a2 + b2 + c2 + d2)−
∑
sym

a3b,

where the sum is over all 12 symmetric terms.

Proposed by: Derek Liu



Answer: 112

Solution: Observe that ∑
sym

a3b =
∑
cyc

a ·
∑
cyc

a3 −
∑
cyc

a4 = 8
∑
cyc

a3 −
∑
cyc

a4,

so

20
∑
cyc

a2 −
∑
sym

a3b =
∑
cyc

a4 − 8
∑
cyc

a3 + 20
∑
cyc

a2

=
∑
cyc

(a4 − 8a3 + 20a2)

= 16(8)− 4(4) +
∑
cyc

(a4 − 8a3 + 20a2 − 16a+ 4)

= 112 +
∑
cyc

(a2 − 4a+ 2)2

≥ 112.

Equality is achieved when (a, b, c, d) = (2 +
√
2, 2 +

√
2, 2 −

√
2, 2 −

√
2) and permutations. This can

be checked by noting that for all x ∈ {a, b, c, d}, we have x2 − 4x+2 = 0, so equality holds in the final
step, and for this assignment of variables we have a+ b+ c+ d = 8.

3. [9] Let S be a set of nonnegative integers such that

• there exist two elements a and b in S such that a, b > 1 and gcd(a, b) = 1; and

• for any (not necessarily distinct) element x and nonzero element y in S, both xy and the remainder
when x is divided by y are in S.

Prove that S contains every nonnegative integer.

Proposed by: Jacob Paltrowitz

Solution: Assume a < b. Note that we can get 1 ∈ S via the Euclidean algorithm, and 0 ∈ S from
a mod 1. Suppose (a, b) ̸= (2, 3). We will show that there exists c, d ∈ S with 1 < c ≤ a and 1 < d ≤ b,
with gcd(c, d) = 1 and at least one of c ̸= a and d ̸= b is true. This will show that 2, 3 ∈ S by repeatedly
applying this sequence of operations. Assume a > 2.

Unless b mod a = 1, (b mod a, a) works. Thus, assume b ≡ 1 (mod a). If we can construct any integer
x such that x ̸≡ 0, 1 mod a, then we can take (x mod a, a); this will be our new goal. Suppose that
such an x is not constructable.

Suppose ak = qbℓ + r, with r < ak. We must have r ≡ 0, 1 (mod a). Taking both sides mod a, this

means that 0 ≡ q + r (mod a), so q ≡ 0,−1 (mod a). Thus,
⌊
ak

bℓ

⌋
≡ 0,−1 (mod a), for all k, ℓ ∈ N.

Take ℓ = ⌊k logb a⌋, so
⌊
ak

bℓ

⌋
is the first digit in the base b representation of ak. We can take k such that

0 ≤ {k logb a} < logb 2, where {·} represents the fractional part operation, since logb a is irrational.

Taking such a k, we get the first digit of ak in base b is 1, which contradicts
⌊
ak

bℓ

⌋
≡ 0,−1 (mod a).

Thus, if a > 2 then we have shown what we wanted. Suppose a = 2. Let 2k < b < 2k+1 for some k. If
b ̸= 3, then either b mod 2k ̸= 1 or 2k+1 mod b ̸= 1, and both numbers are less than b, so either (2, b
mod 2k) or (2, 2k+1 mod b) works.

We have shown 2, 3 ∈ S. Then 4 ∈ S, and 5 = 32 mod 27 ∈ S. Suppose n ≥ 6 is the smallest integer
that isn’t in S. Then n− 4, n− 2, n− 1 ∈ S, so n2 − 5n+4, n2 − 4n+4 are both in S. A computation
shows that n2 − 4n+ 4 < 2(n2 − 5n+ 4), and so

n2 − 4n+ 4 mod (n2 − 5n+ 4) = n ∈ S,



a contradiction. Thus, every single nonnegative integer is in S.

4. [9] Given a positive integer n, let [n] = {1, 2, . . . , n}.

• Let an denote the number of functions f : [n] → [n] such that f(f(i)) ≥ i for all i.

• Let bn denote the number of ordered set partitions of [n], i.e., the number of ways to pick an
integer k and an ordered k-tuple of pairwise disjoint nonempty sets (A1, . . . , Ak) whose union is
[n].

Prove that an = bn.

Proposed by: Derek Liu

Solution: It suffices to define a bijection between the two types of objects in the problem for each n.
We’ll be a bit more general and define a recursive bijection from ordered set partitions of S ⊆ [n] to
functions f : S → S described in the problem as follows:

If S is empty, return the trivial function f : ∅ → ∅.

Otherwise, consider some ordered set partition A1, . . . , Ak of S ⊆ [n], and take A1. Order the
elements of S as s1 < s2 < · · · < sℓ. Now, let sm denote the largest element of A1. Set f(s1) = sm,
and for each si ∈ A1 \ {sm}, set f(si+1) = s1.

Then, let A′
1 = {si+1 : si ∈ A1, si ̸= sm} ∪ {s1} to be the elements of A1 \ {sm} shifted over by

1 index with s1 added in. Create a new ordered set partition of S \ A′
1 by taking the relative

ordering of entries of A2, . . . Ak, and relabelling them to match the elements of S \ A′
1. To

verify that this reordering can be done, we need to check that the sizes |A′
1| = |A1|. However,

|{si+1 : si ∈ A1, si ̸= sm}| = |A1| − 1, and s1 is not in this set, so the new partition is valid.

Let f ′ : S \A′
1 → S \A′

1 be the output of this process recursively applied on the set S \A′
1 with

the new set partition. We can then naturally merge our values of f, f ′ such that if x ∈ A′
1, f(x)

is defined as above, and if x ∈ S \A′
1, we take f(x) := f ′(x).

We now need to show that this process is well-defined, i.e. any input partition causes it to output a
function f : S → S satisfying the desired property, and that it has a well-defined inverse.

First, we observe that the process always outputs a valid function. We can do this by induction; it
is vacuously true on the base case S = ∅. Then, it suffices to show that if the recursive step output
f ′ : S \ A′

1 → S \ A′
1 satisfies f ′(f ′(i)) ≥ i, then adding on the new values of f for A′

1 preserves this
property. Indeed, we only need to verify it at inputs in A′

1, which are si+1 for si ∈ A1 with i < m, and
also s1.

To check this, let si ∈ A1 with si < sm. Then

f(f(si+1)) = f(s1) = sm ≥ si+1.

Similarly, it is always true that f(f(s1)) ≥ s1 since it is the smallest element of S. So, the induction
is complete.

Finally, we need to show that this process is invertible. We do this with another recursive process;
start any function f : S → S satisfying the desired property. We can then define A1 to be {si−1 :
si ∈ f−1(s1), si > s1} ∪ {f(s1)} for f−1(s1) the preimage of s1 in f . Note that for any si ∈ S with
si > s1, we do not have f(si) ∈ f−1(s1) as otherwise f(f(si)) = s1 < si. Furthermore, no elements
of S \ f−1(s1) can map to s1 due to the definition of a preimage. So, we can restrict f to a function
f ′ : S\(f−1(s1)∪{s1}) → S\(f−1(s1)∪{s1}), on which we can recurse to obtain a partition A2, . . . , Ak

and relabel to S \A1 to obtain a partition A1, . . . , Ak of S.

This process is well-defined, and is clearly an inverse, as desired.

Below is an example of the bijection for n = 8 with the ordered set partition {3, 4, 6, 7}∪{1, 5}∪{2, 8}:



Step 1
A1 = {3, 4, 6, 7}

A2, A3: {1, 5}, {2, 8}
Unused elements: {2, 3, 6, 8}

Relabeled A2, A3 : {2, 6}, {3, 8}

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

Step 2
A2 = {2, 6}
A3: {3, 8}

Unused elements: {6, 8}
Relabeled A3: {6, 8}
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Step 3

A3 = {6, 8}
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Output function:
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5. [11] Let ABC be an acute, scalene triangle with circumcenter O and symmedian point K. Let X be
the point on the circumcircle of triangle BOC such that ∠AXO = 90◦. Assume that X ̸= K. The
hyperbola passing through B, C, O, K, and X intersects the circumcircle of triangle ABC at points
U and V , distinct from B and C. Prove that UV is the perpendicular bisector of AX.

The symmedian point of triangle ABC is the intersection of the reflections of B-median and C-median
across the angle bisectors of ∠ABC and ∠ACB, respectively.

Proposed by: Pitchayut Saengrungkongka
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Solution 1: Let H denote the hyperbola, and also recall a well-known fact that A,K,X are collinear.
This solution is split into two independent parts.

Proof of UV ⊥ AX.

Let T = OX∩BC, and let OX intersect ⊙(ABC) at points Y, Z. Then, we apply Desargues Involution
Theorem (DIT) on BCUV and line OX. We get an involution that

• swaps T and UV ∩OX;

• swaps BU ∩OX and CV ∩OX;

• swaps BV ∩OX and CU ∩OX;

• from conic ⊙(ABCUV ), swaps Y and Z;

• from conic H, swaps O and X.

Thus, we get an involution swapping (O,X) and (Y,Z), and (T,UV ∩ OX). Now, notice that since
B,O,X,C are concyclic, we have TY · TZ = TB · TC = TO · TX, so this involution is an inversion at
T . Thus, it maps T to ∞OX . Hence, U, V,∞OX are collinear, implying that UV ⊥ AX.

Proof of UV bisects AX.

Let M be the midpoint of AX. Let AX intersect BC at D and ⊙(ABC) at P . We apply Desargues
Involution Theorem (DIT) on BCUV and line AX. We get an involution that

• swaps D and UV ∩OX;

• swaps BU ∩AX and CV ∩AX;

• swaps BV ∩AX and CU ∩AX;

• from conic ⊙(ABCUV ), swaps A and P ;

• from conic H, swaps K and X.

Thus, we have an involution swapping (A,P ) and (K,X), and we want to show that it swaps (D,M),
or equivalently

(A,X;M,P ) = (P,K;D,A).

The left hand side is AM
XM /AP

XP = −2. To show that (P,K;D,A) = −2, we take any projective
transformation that fixes ⊙(ABC) and sends △ABC to an equilateral triangle. This transformation
preserves BB ∩ CC, CC ∩ AA, and AA ∩ BB, so it preserves symmedians. The result then become
evident.



Remark. Another interesting fact about this hyperbola is that it passes through midpoints of AB and
AC. We left the proof of this as an exercise for the reader.

Solution 2: Let AK meet BC at Z, and redefine U, V to be the intersections of perpendicular bisector
of AX and ⊙(ABC). We will use the following properties of X:

• X lies on AK

• △BXA ∼ △AXC with ratio c : b

• ∠BXA = ∠ACX = 180◦ −A.

Consider the quadratic function

f(P ) =
Pow⊙(ABC)(P )

Pow⊙(ABC)(O)
− d(P,BC)d(P,UV )

d(O,BC)d(O,UV )
.

It is clear (say, in coordinates) that f is the equation of a conic passing through B, C, U , V , and O.
Hence, it suffices to show f(X) = 0 and f(K) = 0.

Since OX||UV , we have

f(X) =
Pow⊙(ABC)(X)

Pow⊙(ABC)(O)
− d(X,BC)

d(O,BC)
.

The RHS above is a circle (in coordinates) and is 0 when X ∈ {O,B,C}, and is hence 0 for any X on
(BOC). Thus, f(X) = 0.

To show that f(K) = 0, consider the function f(P ) for a variable point P on line AKXZ. We claim
that

f(P ) =
PX · PK

AX ·AK
f(A),

after which the result follows from taking P = K. The LHS and RHS are quadratic functions that
agree at A and X. It remains to check that they agree at one more point – we will take P = Z. We
compute

f(Z) =
BZ · CZ

R2
=

a2b2c2

(b2 + c2)2
· 1

R2

f(A) = −d(A,BC)

d(O,BC)
· d(A,UV )

d(O,UV )
=

d(A,BC)

d(O,BC)
=

bc

2R2 cosA

ZK

AK
=

b2 + c2

a2

ZX

AX
=

[XBC]

[XABC]
=

XB ·XC sin(2A)

XB ·XA sin(A) +XA ·XC sin(A)
=

2bc cosA

b2 + c2
,

and the desired result follows.

Solution 3: We prove the following main claim.

Claim. Let P be a point on AX, and let the conic through B,C,O,X, P meet (ABC) again at U ′, V ′.
Then U ′V ′ passes through a fixed point, and the map P 7→ U ′V ′ ∩AX is projective.

Proof. Take a projective transformation sending B,C to the circle points. Then the new problem is
the following: We have points A,X,O, a fixed circle Ω passing through A, and a point P on AX. Let
(POX) meet Ω at U ′V ′. Then U ′V ′ passes through a fixed point and P 7→ U ′V ′ ∩ AX is projective.
First, if we take two points P1, P2, by radical axis on (P1OX), (P2OX), and Ω, U ′

1V
′
1 , U

′
2V

′
2 , and OX

concur. Thus, U ′V ′ meets OX at a fixed point. Let this point be Q. Now let O1 be the center of Ω
and OP the center of (POX). OP moves linearly w.r.t. P , so P 7→ O1OP is projective. Then U ′V ′

is the line through Q perpendicular to O1OP , and hence also moves projectively. Finally, intersecting
U ′V ′ with AX is projective, so the entire map P 7→ U ′V ′ ∩AX is projective, as desired.



We now return to the original problem. Let the tangents to (ABC) at B,C meet at T . It is well-known
that A,X,K, T are collinear, and B,O,C,X, T are concyclic. We now consider the following cases:

• P = AX ∩ BC: The conic (BCOXP ) degenerates to the two lines OX,BC, so U ′V ′ = OX,
and U ′V ′ ∩AX = X. Thus, AX ∩BC 7→ X.

• P = T : The conic (BCOXT ) is just the circle (BOC). Then (BOC) meets (ABC) again at the
circle points, so U ′V ′ is the line at infinity, and T 7→ (AX)∞.

• P = A: In this case, A = U ′ or V ′, so U ′V ′ ∩AX = A and A 7→ A.

From the first two cases, we see that the fixed point U ′V ′ passes through is (OX)∞ i.e. U ′V ′ is always
parallel to OX. Now note that the cross-ratio (A,AX ∩ BC;K,T ) = −1, and hence if K 7→ f(K),
we have (A,X; f(K), (AX)∞) = −1. Thus, f(K) must be the midpoint of AX, and UV is the line
through f(K) parallel to OX i.e. the perpendicular bisector of AX.


