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General Round

1. Six consecutive positive integers are written on slips of paper. The slips are then handed out to Ethan,
Jacob, and Karthik, such that each of them receives two slips. The product of Ethan’s numbers is 20,
and the product of Jacob’s numbers is 24. Compute the product of Karthik’s numbers.

Proposed by: Luke Robitaille

Answer: 42

Solution: Each person’s numbers differ by at most 5, so Alice must have 4 and 5. Bob could have 4
and 6 or 3 and 8. Since Alice already has 4, Bob cannot have 4 and 6. So, Bob has 3 and 8. Then the
six numbers must be 3 through 8, so Charlie has 6 and 7, multiplying to 42 .

2. Let RANDOM be a regular hexagon with side length 1. Points I and T lie on segments RA and DO,
respectively, such that MI = MT and ∠TMI = 90◦. Compute the area of triangle MIT .

Proposed by: Linus Yifeng Tang

Answer: 3
4 = 0.75

Solution:
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By symmetry, IT must be perpendicular to RA and DO. Therefore, the length of IT is the height of

the hexagon, which is
√
3. So, the area of triangle MIT is 1

4IT
2 = 3

4 .

3. Suppose that a, b, and c are distinct positive integers such that abbc = ac. Across all possible values
of a, b, and c, compute the minimum value of a+ b+ c.

Proposed by: Derek Liu

Answer: 13

Solution: We claim that (8, 2, 3) is the desired solution.

Observe that ac−b = bc, so clearly a ̸= 1 and b < a. Furthermore, a and b must be distinct powers of
the same integer.

If a and b were powers of an integer n > 2, then we would have a+ b+ c ≥ 32 + 3 + 1 = 13. Thus, we
only need to consider when they are powers of 2.

If (a, b) = (4, 2) then (c− b) = c
2 , so c = 4, which makes the values not distinct.

If (a, b) = (8, 2) we get our aforementioned solution.

Any other (a, b) sum to at least 12, in which case a+ b+ c ≥ 13.

Thus 13 is minimal.



4. Compute the number of ways to pick a 3-element subset of

{101 + 1, 102 + 1, 103 + 1, 104 + 1, 105 + 1, 106 + 1, 107 + 1}

such that the product of the 3 numbers in the subset has no digits besides 0 and 1 when written in
base 10.

Proposed by: Albert Wang

Answer: 26

Solution: Given a subset {10a+1, 10b+1, 10c+1}, we can directly expand the product of its elements:

(10a + 1)(10b + 1)(10c + 1) = 10a+b+c + 10b+c + 10a+c + 10a+b + 10a + 10b + 10c + 1.

In order for all digits to be 0 or 1, all 7 numbers a + b + c, b + c, a + c, a + b, a, b, c should be distinct
and nonzero, with the latter being guaranteed.

Without loss of generality, we can assume c > b > a. Then,

a+ b+ c > b+ c > a+ c > max(a+ b, c)

and
min(a+ b, c) > b > a,

so the only two numbers that could be the same are a+ b and c.

There are 9 triples (a, b, c) where 1 ≤ a < b < c ≤ 7 and a + b = c, namely (1, 2, 3), (1, 3, 4), (1, 4, 5),
(1, 5, 6), (1, 6, 7), (2, 3, 5), (2, 4, 6), (2, 5, 7), and (3, 4, 7). The remaining triples (a, b, c) all work, so the

answer is
(
7
3

)
− 9 = 26 .

5. Let f be a function on nonnegative integers such that f(0) = 0 and

f(3n+ 2) = f(3n+ 1) = f(3n) + 1 = 3f(n) + 1

for all integers n ≥ 0. Compute the sum of all nonnegative integers m such that f(m) = 13.

Proposed by: Carlos Rodriguez

Answer: 156

Solution: Let xk denote the number x in base k. Observe that if f(x3) = y
3
, then

f (x03) = f(3x) = 3f(x) = y0
3

and
f (x13) = f (x23) = 3f(x) + 1 = y1

3
.

Thus, f(n)
3
is simply n3 with all 2’s replaced with 1’s. We also see that 13 = 1113. Thus, f(m) = 13 if

and only if m = abc3 for digits a, b, c ∈ {1, 2}. Each of a, b, and c takes on each possible value exactly
4 times, so the sum is

(4 · 1 + 4 · 2)(32 + 31 + 30) = 156 .

6. A positive integer n is stacked if 2n has the same number of digits as n and the digits of 2n are multiples
of the corresponding digits of n. For example, 1203 is stacked because 2 × 1203 = 2406, and 2, 4, 0, 6
are multiples of 1, 2, 0, 3, respectively. Compute the number of stacked integers less than 1000.

Proposed by: Srinivas Arun

Answer: 135



Solution: We do casework on the number of digits of n.

One digit. There are 4 one-digit stacked integers: 1, 2, 3, 4.

Two digits. Suppose n = ab is a two-digit integer. If a < 5 and b < 5, then the digits of 2n are double
the respective digits of n, so n is stacked; there are 4 · 5 = 20 such n. Otherwise, since 2n < 100, we
still must have a < 5, so b ≥ 5. Then the last digit of 2n is 2b− 10, so b | 2b− 10, which implies that
b = 5. Then the first digit of 2n is 2a+1, which a must divide, so a = 1. Thus, the only stacked n with
b ≥ 5 is 15. Adding that to the 20 stacked numbers with b < 5 gives us 21 two-digit stacked integers.

Three digits. Suppose n = abc is a three-digit integer. If a, b, and c are all less than 5, then the digits
of 2n are double the respective digits of n, so n is stacked; there are 4 · 5 · 5 = 100 such n. Otherwise,
since 2n < 1000, we must have a < 5. We now casework on which of b and c are at least 5.

• If b ≥ 5 and c ≥ 5, then the digits of 2n are 2a+1, 2b− 9, and 2c− 10 in order. Thus, a | 2a+1,
b | 2b − 9, and c | 2c − 10, which implies a = 1, b = 9, and c = 5. Thus 195 is the only stacked
number in this case.

• If c ≥ 5 only, then 2n = 200a+2bc has first digit 2a and last two digits 2bc, so n is stacked if and
only if bc to be stacked. Since c ≥ 5, as proved before, the only such stacked bc is 15, so we get 4
stacked numbers in this case: 115, 215, 315, and 415.

• If b ≥ 5 only, then 2n has last digit 2c and first two digits 2ab, so n is stacked if and only if ab to
be stacked. As b ≥ 5, similar to the previous case, the only such stacked ab is ab = 15, so we get
5 stacked numbers in this case: 150, 151, 152, 153, and 154.

Summing over all cases, there are 100 + 1 + 4 + 5 = 110 three-digit stacked integers.

Our final answer is 4 + 21 + 110 = 135 .

7. Let triangle ABC have AB = 5, BC = 8, and ∠ABC = 60◦. A circle ω tangent to segments AB and
BC intersects segment CA at points X and Y such that points C, Y , X, and A lie along CA in this
order. If ω is tangent to AB at point Z and ZY ∥ BC, compute the radius of ω.

Proposed by: Ethan Liu

Answer: 40
13

√
3
= 40

√
3

39

Solution:
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Let ω tangent to BC at T . Observe that BT = BZ and ∠ABC = 60◦, so △TBZ is equilateral.
Moreover, the tangent to ω at T is parallel to BC, so TY = TZ. Combining this with ∠TZY =
∠ZTB = 60◦, it follows that △TY Z is equilateral as well.



Now, let BT = BZ = TZ = TY = Y Z = x. Then, AZ = 5 − x. Thus, similar triangles AY Z and
ABC gives

AZ

AB
=

Y Z

BC
=⇒ 5− x

5
=

x

8
.

Solving this equation gives 40 − 8x = 5x, or x = 40
13 . Finally, since △TY Z is an equilateral triangle

inscribed in ω, the radius of ω is x√
3
= 40

13
√
3
.

8. Let

f(x) =

∣∣∣∣∣
∣∣∣∣ · · · ∣∣∣∣∣||x| − 1| − 2

∣∣− 3
∣∣∣− · · ·

∣∣∣∣− 10

∣∣∣∣∣.
Compute f(1) + f(2) + · · ·+ f(54) + f(55).

Proposed by: Benjamin Shimabukuro

Answer: 285

Solution: Let Tk denote the k-th triangular number 1 + 2 + · · ·+ k.

For any integer i, the function gi(x) = |x − i| is a piecewise linear function with slopes ±1. As
f(x) = g10(· · · (g1(g0(x))) · · · ), it is also piecewise linear with slopes ±1. As gi(x) has a cusp only
where it evaluates to 0, the cusps of f occur precisely where gk(· · · (g1(g0(x))) · · · ) = 0 for some
integer 0 ≤ k ≤ 10. Then, gk−1(· · · (g0(x)) · · · ) = ±k, and since it is positive, it equals k. Similarly,
gk−2(· · · (g0(x)) · · · ) = (k − 1) ± k, so it must be k + (k − 1). Continuing this argument, we see that
|x| = k + (k − 1) + · · · + 1 = Tk, so the cusps occur precisely when |x| is a triangular between 0 and
55, inclusive. As f(0) = 5 and f(1) = 6, the graph of f(x) on 0 ≤ x ≤ 55 looks as follows:

1 3 6 10 15 21 28 36 45 550

5

Now observe that for 1 ≤ k ≤ 9, the (k+1) values g(Tk), g(Tk +1), . . . , g(Tk+1− 1) are 5− k
2 through

5 + k
2 if k is even, and 5.5 + k

2 through 5.5− k
2 if k is odd. Thus they average to 5 if k is even and 5.5

if k is odd. As f(55) = 0, the desired sum is

5 · (3 + 5 + 7 + 9) + 5.5 · (2 + 4 + 6 + 8 + 10) = 285 .

9. Let ABCDEF be a regular hexagon with center O and side length 1. Point X is placed in the interior
of the hexagon such that ∠BXC = ∠AXE = 90◦. Compute all possible values of OX.

Proposed by: Ethan Liu, Isabella Zhu, Pitchayut Saengrungkongka

Answer: 1
2 ,

√
7
7

Solution 1:
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Point X is the intersection of circles with diameter AE and BC. Thus, there are two possible inter-
section points. Since AC ⊥ BE, the first point, X1, is the intersection of AC and BE, from which we

can see OX1 = 1
2 as our first answer. Let X2 be the other intersection point.

Let M be the midpoint of BC and N be the midpoint of AE. Then MX2 = NO = 1
2 and MO =

NX2 =
√
3
2 , so OX2MN is an isosceles trapezoid. By law of cosine on △OMN , we have

MN =
√

OM2 +ON2 − 2 ·OM ·ON cos 150◦

=

√(√
3
2

)2

+
(
1
2

)2
+ 2 ·

√
3
2 · 1

2 ·
√
3
2 =

√
7
2 .

Moreover, by Ptolemy’s theorem,

OX2 ·MN = MO2 −NO2 = 1
2 .

Combining the previous two equations gives OX2 =
√
7
7 .

Solution 2: Recall the first paragraph of the previous solution that X1 = AC ∩BE is the first point.
Thus, the second point X2 is the Miquel point of cyclic quadrilateral ACBE.

By a well-known property of Miquel point, if Y = AB ∩CE, then Y and X2 are inverses with respect
to the circumcircle of ABCDEF . Thus, OX2 ·OY = 1.

One can compute OY as follows: from triangle BCY , we get that BY = BC/ sin 30◦ = 2. Thus, by
power of point,

OY 2 − 12 = Y B · Y A = 2 · 3 = 6 =⇒ OY =
√
7,

implying OX2 =
√
7
7 .

10. Let S = {1, 2, 3, . . . , 64}. Compute the number of ways to partition S into 16 arithmetic sequences
such that each arithmetic sequence has length 4 and common difference 1, 4, or 16.

Proposed by: Isabella Zhu

Answer: 203

Solution: The key observation is the following:

Claim 1. No partition can contain all three common differences.

Proof. Indeed, suppose the sequences x, x + 16, x + 32, x + 48 and y, y + 4, y + 8, y + 12 are both
present for some x and y in S. Without loss of generality, assume y ≤ 26; otherwise, we can take our
partition and replace each number n with 65−n, resulting in the sequence 53−y, 57−y, 61−y, 65−y
instead.



Note that y ̸≡ x mod 4, as otherwise one of y, y + 4, y + 8, or y + 12 would be equivalent to x modulo
16 and the two sequences would intersect.

Hence, there exists a number z strictly between y and y + 4 which is equivalent to x modulo 4. The
same argument above tells us z cannot be in a difference-4 sequence; it also cannot be in a difference-1
sequence, as such a sequence would contain either y or y + 4. Thus z is in a difference-16 sequence.
Similarly, as z + 4 lies between y + 4 and y + 8, and z + 8 lies between y + 8 and y + 12, both z + 4
and z + 8 are in difference-4 sequences.

Since we assumed y ≤ 26, we know y + 32 ∈ S. Note that y + 20 cannot be part of a difference-16
sequence, as such a sequence would also contain y + 4. Furthermore, y + 20 lies between z + 16 and
z + 20, both of which are in difference-4 sequences; hence, y + 20 cannot be part of a difference-1
sequence. Thus y + 20 is in a difference-4 sequence. This sequence must contain either y + 16 or both
y + 28 and y + 32.

If the sequence contains y + 16, then since z + 12 lies strictly between y + 12 and y + 16, the same
argument as before tells us z + 12 is in a difference-16 sequence. If the sequence contains y + 28 and
y+32, then z +28 lies strictly between the two, so z + 28 is in a difference-16 sequence; this sequence
contains z + 12. In either case, z + 12 is in a difference-16 sequence.

Now, we know z, z+4, z+8, and z+12 are all in difference-16 sequences. These sequences contain all
16 numbers in the same residue class as z modulo 4. Any difference-1 sequence would have to contain
a value in this residue class; thus, no difference-1 sequences can be present.

We casework on which types of sequences are present.

Case 1: Only sequences of common difference 1 and 16 appear.

Observe that each sequence of common difference 1 has one number of each residue class modulo 4,
while each sequence of common difference 16 has four numbers in the same residue class. Since S has
an equal number of elements in each residue class, there must be an equal number of difference-16
sequences in each residue class, so the number of difference-16 sequences is a multiple of 4. Say there
are 4x of them.

Then, among the numbers 1 through 16, there are 4x of them that lie in difference-16 sequences, so
the remaining 16− 4x lie in 4− x difference-1 sequences.

Conversely, if we are given how the numbers from 1 through 16 are split between difference-1 and
difference-16 sequences, we can uniquely recover the whole partition on S. Indeed, the difference-16
sequences are fixed, which in turn fixes the difference-1 sequences.

Thus, the number of sequences in this case is the number of ordered partitions of 16 into 4x 1s and
4− x 4s, which is

(
4+3x
4−x

)
. Summing over all x, the total for this case is(

16

0

)
+

(
13

1

)
+

(
10

2

)
+

(
7

3

)
+

(
4

4

)
= 95.

Case 2: Only sequences of common difference 4 and 16 appear.

Within the multiples of 4, any difference-4 and difference-16 sequence intersect, so the 16 multiples of
4 must be covered with either four difference-4 sequences or four difference-16 sequences. The same
goes for each residue class mod 4, and we can make each choice independently. Thus the number of
partitions in this case is 24 = 16.

Case 3: Only sequences of common difference 1 and 4 appear.

Observe that if x and x + 4 are in a difference-4 sequence, then x + 1, x + 2, and x + 3 must also
be in difference-4 sequences, so the difference-4 sequences form contiguous blocks of length 4 · 4 = 16.
The difference-1 sequences are themselves contiguous blocks of length 4, so the number of sequences
in this case is the number of ordered partitions of 64 into 4s and 16s. This is the same as the number
of ordered partitions of 16 into 1s and 4s, which we calculated in Case 1; there are 95 of them.

Summing over all cases, we get 95+16+95 = 206. However, we overcount any partition with only one
type of sequence, of which there are three (one for each type). Thus, the answer is 206− 3 = 203 .




