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Algebra and Number Theory Round

1. Compute the sum of the positive divisors (including 1) of 9! that have units digit 1.

2. Mark writes the expression
√
abcd on the board, where abcd is a four-digit number and a ̸= 0. Derek,

a toddler, decides to move the a, changing Mark’s expression to a
√
bcd. Surprisingly, these two expres-

sions are equal. Compute the only possible four-digit number abcd.

3. Given that x, y, and z are positive real numbers such that

xlog2(yz) = 28 · 34, ylog2(zx) = 29 · 36, and zlog2(xy) = 25 · 310,

compute the smallest possible value of xyz.

4. Let ⌊z⌋ denote the greatest integer less than or equal to z. Compute

1000∑
j=−1000

⌊
2025

j + 0.5

⌋
.

5. Let S be the set of all nonconstant monic polynomials P with integer coefficients satisfying P
(√

3 +
√
2
)
=

P
(√

3−
√
2
)
. If Q is an element of S with minimal degree, compute the only possible value of

Q(10)−Q(0).

6. Let r be the remainder when 20172025! − 1 is divided by 2025!. Compute r
2025! . (Note that 2017 is

prime.)

7. There exists a unique triple (a, b, c) of positive real numbers that satisfies the equations

2(a2 + 1) = 3(b2 + 1) = 4(c2 + 1) and ab+ bc+ ca = 1.

Compute a+ b+ c.

8. Define sgn(x) to be 1 when x is positive, −1 when x is negative, and 0 when x is 0. Compute

∞∑
n=1

sgn(sin(2n))

2n
.

(The arguments to sin are in radians.)

9. Let f be the unique polynomial of degree at most 2026 such that for all n ∈ {1, 2, 3, . . . , 2027},

f(n) =

{
1 if n is a perfect square,

0 otherwise.

Suppose that a
b is the coefficient of x2025 in f , where a and b are integers such that gcd(a, b) = 1.

Compute the unique integer r between 0 and 2026 (inclusive) such that a − rb is divisible by 2027.
(Note that 2027 is prime.)

10. Let a, b, and c be pairwise distinct complex numbers such that

a2 = b+ 6, b2 = c+ 6, and c2 = a+ 6.

Compute the two possible values of a+ b+ c.


