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Algebra and Number Theory Round

1. Compute the sum of the positive divisors (including 1) of 9! that have units digit 1.
Proposed by: Jackson Dryg
Answer: | 103

Solution: The prime factorization of 9! is 27 - 3% . 5. 7. Every divisor of 9! has prime factorization
2¢.30.5¢.7% where 0 <a<7,0<b<4,0<¢<1,and 0<d<1.If the divisor has units digit 1, it
cannot be divisible by 2 or 5, so a = ¢ = 0.

Now take cases on the value of d:

e If d = 0, then the divisor is 3° for some 0 < b < 4. The possible divisors are 1, 3, 9, 27, and 81,
of which 1 and 81 work.

e If d = 1, then the divisor is 3° - 7 for some 0 < b < 4. The possible divisors are then 7, 3-7,9-7,
27 -7, and 81 - 7. Of these, only 3 -7 = 21 works.

The answer is 1 + 21 + 81 = .

2. Mark writes the expression \/abcd on the board, where abed is a four-digit number and a # 0. Derek,
a toddler, decides to move the a, changing Mark’s expression to a+/bcd. Surprisingly, these two expres-
sions are equal. Compute the only possible four-digit number abcd.

Proposed by: Pitchayut Saengrungkongka

Answer:

Solution: Let x = bed. Then, we rewrite the given condition y/abed = a+/bed as
1000a + = = a’x,

which simplifies as
(a* — 1)z = 1000a.

In particular, a? — 1 divides 1000a. Since gcd(a? — 1,a) = 1, it follows that a®> — 1 | 1000. The only
a €{1,2,...,9} that satisfies this is a = 3. Then 8z = 3000, so & = 375. Thus abed = | 3375 |.

3. Given that z, y, and z are positive real numbers such that

xlogz(yz) _ 28 . 347 ylogz(z:v) _ 29 . 367 and ZlogQ(zy) _ 25 . 3107

compute the smallest possible value of zyz.

Proposed by: Derek Liu

1

Answer: 576

Solution: Let k = log, 3 for brevity. Taking the base-2 log of each equation gives

(logy ) (logy y + log, 2) = 8 + 4k,
(logy y)(logy 2 + logy ) = 9 + 6k,
(log, 2)(logy x + logy y) = 5 + 10k.



Adding the first two equations and subtracting the third yields 2 log, x log, y = 12, so log, x log, y = 6.
Similarly, we get

log, x logy y = 6,
log, y log, 2 = 3 + 6k,
log, z logy x = 2 + 4k.

Multiplying the first two equations and dividing by the third yields (log, y)? = 9, so logyy = 3.
Then, the first and last equations tell us log, © = +2 and log, z = £(1 + 2k), with all signs matching.
Thus

logy x4 logy y +1ogy 2 = £(3 + 2 + (1 + 2k)) = £(6 + 2k),

SO
TYz = oF(6+2k) — 96 .32 p 276.372

Clearly, the smallest solution is 276.372 =

1
576 |

. Let | z| denote the greatest integer less than or equal to z. Compute
1000

> ||

j=—1000

Proposed by: Linus Yifeng Tang

Answer:

Solution: The key idea is to pair up the terms {%J and L%J There are 1000 such pairs and one

lone term, L 2025 J = 2. Thus,

1000.5
1000
2025 2025 2025
:2 .
2 b+o.5J > Q z J%—xD

j=—1000 2€{0.5,1.5,...,999.5}

We note that
0 if a is an integer.

la] + [-a) = {

—1 otherwise.

Therefore,

T —x —1 otherwise.

{2025J n {2025J _ {O if 22 divides 4050

As x ranges in the set {0.5,1.5,2.5,...,999.5}, 22 ranges in the set {1,3,5,...,1999}. This set includes
all 15 odd divisors of 4050 except for 2025. Thus, there are 14 values of = for which [%J + {%J
evaluates to 0, and the remaining 1000 — 14 = 986 values of x make it evaluate to —1. Therefore,

£ (22 ) o

j=—1000 2€{0.5,1.5,...,999.5}




5. Let S be the set of all nonconstant monic polynomials P with integer coefficients satisfying P (\/g + \/5) =
P (\/§ - \/5) If Q is an element of & with minimal degree, compute the only possible value of
Q(10) — Q(0).

Proposed by: David Dong
Answer: | 890

Solution: First, note that the polynomial z* — 1022 + 1 has both v/3 4+ /2 and v/3 — v/2 as roots. It
suffices to check whether a polynomial of degree at most 3 belongs in S. Suppose f(z) = ax® + bx? +
cx +d € S. We compute

(V3+v2)’ — (V3 -+v2)* = 22v2
(V3+ V)R — (V3 - V)2 = 46
(V3+VD! - (VE— V3 = 2V2,
so we get that
F(V3+V2) = f(V3-2) = (22v2)a + (4V6)b + (2V2)c.

By resolving linear dependencies, it’s clear that b = 0 and ¢ = —11a. It follows that if f is not the zero
polynomial, it must be cubic. It is then clear that f(x) = 2® — 11z + d has minimal degree in S, and

thus Q(10) — Q(0) = f(10) — £(0) =[890].

6. Let r be the remainder when 201729%' — 1 is divided by 2025!. Compute
prime.)

50551+ (Note that 2017 is

Proposed by: Srinivas Arun

. 1311
Answer: 5577

Solution: Let N = 2017%0?%' Let p be a prime dividing 2025! other than 2017. Let p* be the largest

power of p dividing 2025!. Clearly, ¢(p*) = (p — 1)p*~! divides 2025! and ged(2017, p*) = 1, so by
Euler’s Totient Theorem,

N=1 (mod p").

Repeating for all such primes p, we obtain

N=1 (mod 2025!/2017).

Therefore, 2025 | N — 1, so r = 29255 for some 0 < s < 2017. Also, since N =0 (mod 2017), we have

2017 2017
r=222%5=—1 (mod 2017).
By Wilson’s,
2025!
So17 = 20161(2018)(2019) ... (2025) = —81 =20 (mod 2017).

Therefore, s is negative the inverse of 20 (mod 2017), which is 1311. Our answer is

r (2025!/2017)(1311)  [1311

2025! 2025! 12017

7. There exists a unique triple (a, b, ¢) of positive real numbers that satisfies the equations
200> +1)=3(*+1)=4(c* +1) and ab+bc+ca=1.

Compute a + b+ c.



Proposed by: David Wei
9v23 _ _9

23 7 /23

Solution 1: The crux of this problem is to apply the trigonometric substitutions a = cot a, b = cot 3,
and ¢ = coty, with 0 < «, 8,7 < /2. Then, the given equations translate to

2 3 4
sinfa  sin?f  sin’~y

Answer:

and  cot acot 8+ cot S coty + cotycotaw = 1.

From the second equation, we get

1 —cotacotB

= —cot .
cot o + cot 8 cot(a+f)

coty =

Since a, 8, and v all between 0 and 7/2, we discover that
a+B+y=m.

Let AABC be the (acute) triangle with side lengths BC = v/2, CA = /3, and AB = /4. By Law of
Sines, setting « = LA, 8 = ZB, and v = ZC will satisfy both equations. Thus, Law of Cosines gives
344-2 5
2.V3-V4 /48

Similar calculations give b = 75 and ¢ = 7330 50 the answer is a + b+ ¢ = 753 |

cosa = =cota =

w

Solution 2: Let 2(a? + 1) = 3(b? + 1) = 4(c®> + 1) = x. Then, since ab + bc + ca = 1, we have the
following system of equations:

(a+b)(c+a)=a*+ab+bc+ca=a*+1=2z/2
(b+c)a+b)=b+ab+bct+ca=b>+1=zx/3
(c+a)b+c)=c*+ab+bctca=c*+1=z/4

Taking advantage of symmetry, we discover that

/2
a+b= ?m’ b—l—c:\/g, and cH4a= 3%

To solve for x, notice that

2 = 2(ab + be + ca)
=(a+b)*+ (b+c)?+(c+a)?—2(a*+b* + )

2 = 3z T T T

= — 4+ — ——2(7—1 - -1 7—1>
3+6+8 2 +3 +4
23x

=——46
24+7

SO x = %. Therefore,




8. Define sgn(x) to be 1 when x is positive, —1 when z is negative, and 0 when z is 0. Compute

>, sgn(sin(2"))
25: mn '

n=1

(The arguments to sin are in radians.)
Proposed by: Karthik Venkata Vedula

Answer: 1-— %

Solution: Note that each of following is equivalent to the next.
e sgn(sin(2™)) = +1.
° 0<2"mod27r<7r
e 0< 2 mod 2<1.
e The nth digit after the decimal point in the binary representation of % is 0.
Similarly, sgn(sin(2")) = —1 if and only if the n-th digit after the decimal point in the binary repre-

sentation of % is 1. In particular, if a,, is the n-th digit, then sgn(sin(2")) = 1 —2a,,. Thus, the desired
sum is

9. Let f be the unique polynomial of degree at most 2026 such that for all n € {1,2,3,...,2027},

1 if n is a perfect square,
f(n) = .
0 otherwise.

Suppose that 7 is the coefficient of 22925 in f, where a and b are integers such that ged(a,b) = 1.

Compute the unique integer r between 0 and 2026 (inclusive) such that a — rb is divisible by 2027.
(Note that 2027 is prime.)

Proposed by: Pitchayut Saengrungkongka

Answer:

Solution 1: Let p = 2027. We work in F, for the entire solution. Recall the well-known fact that

fo -1 ifk>0andp—1]|k,
cry otherwise,

assuming 0° = 1. In particular, for any polynomial g(z) = by + b1x + - - - + b, 2™, we have

= > 9(@) = byt +bapry + o F b1 jo-1)-
z€F,

We apply this fact on g(x) = zf(x). As degzf(z) < p, the right hand side is simply the coefficient of
22025 which is what we want. Hence, the answer is

45 - 46 - 91
=Y wf(r)=—(12+22 4. +45%) = ———5— =[1037] (mod 2027).
zclF,



10.

Solution 2: Again, let p = 2027 and work in F,,. By the Lagrange Interpolation formula, we get that

) =3 £6) [T =2

i—7
i€F, j#i J

We now simplify the polynomial in the product sign on the right-hand side. First, recall the identity

H(m—j):x”—wz(Jc—i)p—(x—i).

jEF,

The denominator [],_,(i — j) becomes (p —1)! = —1 by Wilson’s. Thus, we get that

Ha:—j I G el ). @—i 4L

j#ifj T —1

The coefficient of 2P~2 in the above expression is —i. Therefore, the first equation gives that the
coefficient of zP~2 in f(x) is

4546 - 91
> —if(i) = —(12 427+ 445%) = = =[1037] (mod 2027).

icF,

Let a, b, and ¢ be pairwise distinct complex numbers such that
a?=b+6, b*=c+6, and ®=a+6.

Compute the two possible values of a + b + c.
Proposed by: Vasawat Rawangwong

—1+V17 —-1—-+/17
2 ’ 2

Answer:

Solution 1: Notice that any of a, b, or ¢ being 3 or —2 implies a = b = ¢, which is invalid. Thus,

(@ =9)1* =N -9)=b-3)(c—3)(a—3) = (a+3)(b+3)(c+3)=1,
(a®> =) (0? —4)(* —4) = (b+2)(c+2)(a+2) = (a—2)(b—2)(c—2)=1.
Therefore, 2 and —3 are roots of the polynomial (z — a)(z — b)(z — ¢) + 1, and so there exists some ¢

such that
(z—t)(z—2)(x+3)=(x—a)(x—b)(x —c)+ 1.

Comparing coefficients gives a + b+ c =1t — 1 and ab+ bc+ ca = —(t + 6). We can then solve for ¢ by
noting a®? + b2 +c?2 = (b+6)+ (c+6)+(a+6)=a+b+c+18, so

1 1
ab + bc + ca = 5((a+b+c)27(a2+b2+62)):5((a+b+c)2—(a+b+c+18)).

Hence,
1 1+ /17
—@+®:§«p4ﬁ—@+in):»ﬂ—t—4:0:¢t:—if—.
Therefore a + b+ ¢ = %‘/ﬁ are the two possible values of a + b + c.
Solution 2: Let s = a + b + c. Subtracting two adjacent equations gives a? — b?> = b — ¢, or

(a —b)(a +b) = (b — ¢). Multiplying this and its cyclic variants gives

(a+b)(b+c)(c+a)=1.



Now, we recall the identity
(a+b+e)P=a®++c+3(a+b)(b+c)cta)
— S =a+b+3+3

To simplify a3 + 0% 4 ¢?, we add a times the first equation, b times the second, and ¢ times the third
to obtain

a® + b+ ¢ =a(b+6) + b(c+6) + c(a+6)
= (ab+ bc + ca) + 6s
:%((a+b+c)2—(a2+b2—|—02)) + 65
52— 1((b+6)+ (c+6) + (a+6)) +6s

32—|—1715—9.

N~ N

Therefore,
=3t B 6 = (=) (P s —4) =0

At this point, the only reasonable guess is that s = % is an extra solution, and the remaining two roots

s = %\/ﬁ are the possible answers. We now justify this guess. Assume for sake of contradiction

that s = 2. Then,

Then, observe

abc=(a+b+c)(ab+bc+ca) — (a+b)(b+¢)(c+a)
_ 207 _ _ 223

16 - 16 *

On the other hand,

(a+6)(b+6)(c+6)=216+36(a+ b+ c)+ 6(ab+ bc + ca) + abe

=216+36-%—6.%_%7

denominator 162 = 256, a contradiction. Thus s = % is impossible. (It arises from a = b =

which satisfies (a + b)(b+ ¢)(c + a) = 1 but not the given conditions.)

which is a rational number of denominator 16. But (a + 6)(b+ 6)(c + 6) = b*c*a® = (—222)" has
c

Solution 3: Subtracting any two adjacent equations gives a? — b?> = b — ¢, which is equivalent to both
(a—b)(a+b)=(b—c)and (a —b)(a+ b+ 1) = (a — ¢). Multiplying each of these with its respective
cyclic variants and canceling the (a — b)(b — ¢)(c — a) factor (which is given to be nonzero), we get

(a+b)(b+c)(c+a)=1 and (a+b+1)b+c+1)(c+a+1)=-1.
Expanding the latter equation and using the given equations gives the following result.

(a+b)(b+c)(c+a)+ (a®+b*+c*) +3(ab+bc+ca)+2(a+b+e)+1=—1
1+ (b+6+c+6+a+6)+3(ab+be+ca)+2a+b+ec)+1=—1
3(a+b+c)+3(ab+ bc+ ca) = —21

a+b+c+ab+bc+ca=—T7.



Let s = a+ b+ ¢. We can then solve for s by considering the following;:

52 = (a®> +b* 4 ) + 2(ab + bc + ca)
=0b+6+c+6+a+6)+2(—7T—a—-b—c)
=—s+4,

SO § =

Solution 4: Let s = a + b+ ¢ and consider the polynomial
z+ (22 —6) + (2 —6)* —6) —s =a? — 112® + = + 24 — 5.

This polynomial has roots a, b, and c. By Vieta’s, the sum of all four roots is 0, so its fourth root must
be —s. Using Vieta’s again, we have ab + bc + ca — sa — sb — sc = —11. We can now solve for s.
ab+bc+ca—(a+b+c)?=—11
a? +02+c*+ab+be+ca=11
La+b+e)+ @+ +c2) =11
(a+b+c)>+(b+6+c+6+a+6)=22

ts—4=0 = s=

—1++17
— |

Remark. Another way to finish using this approach is to substitute —s directly into 2% — 1122 + 2 +
24 — s =0 to get (s — 3)(s+2)(z% +  — 4) = 0, then discard the solutions s = 3 and s = —2, which
arise from the invalid values a = b=c¢ =3 and a = b = ¢ = —2. (In the invalid cases, s Za+ b+ c
because a = b = ¢ is only a single root to the polynomial.)



