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Algebra and Number Theory Round

1. Compute the sum of the positive divisors (including 1) of 9! that have units digit 1.

Proposed by: Jackson Dryg

Answer: 103

Solution: The prime factorization of 9! is 27 · 34 · 5 · 7. Every divisor of 9! has prime factorization
2a · 3b · 5c · 7d, where 0 ≤ a ≤ 7, 0 ≤ b ≤ 4, 0 ≤ c ≤ 1, and 0 ≤ d ≤ 1. If the divisor has units digit 1, it
cannot be divisible by 2 or 5, so a = c = 0.

Now take cases on the value of d:

• If d = 0, then the divisor is 3b for some 0 ≤ b ≤ 4. The possible divisors are 1, 3, 9, 27, and 81,
of which 1 and 81 work.

• If d = 1, then the divisor is 3b · 7 for some 0 ≤ b ≤ 4. The possible divisors are then 7, 3 · 7, 9 · 7,
27 · 7, and 81 · 7. Of these, only 3 · 7 = 21 works.

The answer is 1 + 21 + 81 = 103 .

2. Mark writes the expression
√
abcd on the board, where abcd is a four-digit number and a ̸= 0. Derek,

a toddler, decides to move the a, changing Mark’s expression to a
√
bcd. Surprisingly, these two expres-

sions are equal. Compute the only possible four-digit number abcd.

Proposed by: Pitchayut Saengrungkongka

Answer: 3375

Solution: Let x = bcd. Then, we rewrite the given condition
√
abcd = a

√
bcd as

1000a+ x = a2x,

which simplifies as
(a2 − 1)x = 1000a.

In particular, a2 − 1 divides 1000a. Since gcd(a2 − 1, a) = 1, it follows that a2 − 1 | 1000. The only

a ∈ {1, 2, . . . , 9} that satisfies this is a = 3. Then 8x = 3000, so x = 375. Thus abcd = 3375 .

3. Given that x, y, and z are positive real numbers such that

xlog2(yz) = 28 · 34, ylog2(zx) = 29 · 36, and zlog2(xy) = 25 · 310,

compute the smallest possible value of xyz.

Proposed by: Derek Liu

Answer: 1
576

Solution: Let k = log2 3 for brevity. Taking the base-2 log of each equation gives

(log2 x)(log2 y + log2 z) = 8 + 4k,

(log2 y)(log2 z + log2 x) = 9 + 6k,

(log2 z)(log2 x+ log2 y) = 5 + 10k.



Adding the first two equations and subtracting the third yields 2 log2 x log2 y = 12, so log2 x log2 y = 6.
Similarly, we get

log2 x log2 y = 6,

log2 y log2 z = 3 + 6k,

log2 z log2 x = 2 + 4k.

Multiplying the first two equations and dividing by the third yields (log2 y)
2 = 9, so log2 y = ±3.

Then, the first and last equations tell us log2 x = ±2 and log2 z = ±(1 + 2k), with all signs matching.
Thus

log2 x+ log2 y + log2 z = ±(3 + 2 + (1 + 2k)) = ±(6 + 2k),

so
xyz = 2±(6+2k) = 26 · 32 or 2−6 · 3−2.

Clearly, the smallest solution is 2−6 · 3−2 = 1
576 .

4. Let ⌊z⌋ denote the greatest integer less than or equal to z. Compute

1000∑
j=−1000

⌊
2025

j + 0.5

⌋
.

Proposed by: Linus Yifeng Tang

Answer: −984

Solution: The key idea is to pair up the terms
⌊
2025
−x

⌋
and

⌊
2025
x

⌋
. There are 1000 such pairs and one

lone term,
⌊

2025
1000.5

⌋
= 2. Thus,

1000∑
j=−1000

⌊
2025

j + 0.5

⌋
= 2 +

∑
x∈{0.5,1.5,...,999.5}

(⌊
2025

x

⌋
+

⌊
2025

−x

⌋)
.

We note that

⌊a⌋+ ⌊−a⌋ =

{
0 if a is an integer.

−1 otherwise.

Therefore, ⌊
2025

x

⌋
+

⌊
2025

−x

⌋
=

{
0 if 2x divides 4050

−1 otherwise.

As x ranges in the set {0.5, 1.5, 2.5, . . . , 999.5}, 2x ranges in the set {1, 3, 5, . . . , 1999}. This set includes
all 15 odd divisors of 4050 except for 2025. Thus, there are 14 values of x for which

⌊
2025
x

⌋
+
⌊
2025
−x

⌋
evaluates to 0, and the remaining 1000− 14 = 986 values of x make it evaluate to −1. Therefore,

1000∑
j=−1000

⌊
2025

j + 0.5

⌋
= 2 +

∑
x∈{0.5,1.5,...,999.5}

(⌊
2025

x

⌋
+

⌊
2025

−x

⌋)
= 2 + 986 · (−1) = −984 .



5. Let S be the set of all nonconstant monic polynomials P with integer coefficients satisfying P
(√

3 +
√
2
)
=

P
(√

3−
√
2
)
. If Q is an element of S with minimal degree, compute the only possible value of

Q(10)−Q(0).

Proposed by: David Dong

Answer: 890

Solution: First, note that the polynomial x4 − 10x2 + 1 has both
√
3 +

√
2 and

√
3−

√
2 as roots. It

suffices to check whether a polynomial of degree at most 3 belongs in S. Suppose f(x) = ax3 + bx2 +
cx+ d ∈ S. We compute

(
√
3 +

√
2)3 − (

√
3−

√
2)3 = 22

√
2

(
√
3 +

√
2)2 − (

√
3−

√
2)2 = 4

√
6

(
√
3 +

√
2)1 − (

√
3−

√
2)1 = 2

√
2,

so we get that
f(
√
3 +

√
2)− f(

√
3−

√
2) = (22

√
2)a+ (4

√
6)b+ (2

√
2)c.

By resolving linear dependencies, it’s clear that b = 0 and c = −11a. It follows that if f is not the zero
polynomial, it must be cubic. It is then clear that f(x) = x3 − 11x+ d has minimal degree in S, and
thus Q(10)−Q(0) = f(10)− f(0) = 890 .

6. Let r be the remainder when 20172025! − 1 is divided by 2025!. Compute r
2025! . (Note that 2017 is

prime.)

Proposed by: Srinivas Arun

Answer: 1311
2017

Solution: Let N = 20172025!. Let p be a prime dividing 2025! other than 2017. Let pk be the largest
power of p dividing 2025!. Clearly, φ(pk) = (p − 1)pk−1 divides 2025! and gcd(2017, pk) = 1, so by
Euler’s Totient Theorem,

N ≡ 1 (mod pk).

Repeating for all such primes p, we obtain

N ≡ 1 (mod 2025!/2017).

Therefore, 2025!
2017 | N − 1, so r = 2025!

2017 s for some 0 ≤ s < 2017. Also, since N ≡ 0 (mod 2017), we have

r = 2025!
2017 s ≡ −1 (mod 2017).

By Wilson’s,
2025!

2017
= 2016!(2018)(2019) . . . (2025) ≡ −8! ≡ 20 (mod 2017).

Therefore, s is negative the inverse of 20 (mod 2017), which is 1311. Our answer is

r

2025!
=

(2025!/2017)(1311)

2025!
=

1311

2017
.

7. There exists a unique triple (a, b, c) of positive real numbers that satisfies the equations

2(a2 + 1) = 3(b2 + 1) = 4(c2 + 1) and ab+ bc+ ca = 1.

Compute a+ b+ c.



Proposed by: David Wei

Answer: 9
√
23

23 = 9√
23

Solution 1: The crux of this problem is to apply the trigonometric substitutions a = cotα, b = cotβ,
and c = cot γ, with 0 < α, β, γ < π/2. Then, the given equations translate to

2

sin2 α
=

3

sin2 β
=

4

sin2 γ
and cotα cotβ + cotβ cot γ + cot γ cotα = 1.

From the second equation, we get

cot γ =
1− cotα cotβ

cotα+ cotβ
= − cot(α+ β).

Since α, β, and γ all between 0 and π/2, we discover that

α+ β + γ = π.

Let △ABC be the (acute) triangle with side lengths BC =
√
2, CA =

√
3, and AB =

√
4. By Law of

Sines, setting α = ∠A, β = ∠B, and γ = ∠C will satisfy both equations. Thus, Law of Cosines gives

cosα =
3 + 4− 2

2 ·
√
3 ·

√
4
=

5√
48

=⇒ a = cotα =
5√
23

Similar calculations give b = 3√
23

and c = 1√
23
, so the answer is a+ b+ c = 9√

23
.

Solution 2: Let 2(a2 + 1) = 3(b2 + 1) = 4(c2 + 1) = x. Then, since ab + bc + ca = 1, we have the
following system of equations:

(a+ b)(c+ a) = a2 + ab+ bc+ ca = a2 + 1 = x/2

(b+ c)(a+ b) = b2 + ab+ bc+ ca = b2 + 1 = x/3

(c+ a)(b+ c) = c2 + ab+ bc+ ca = c2 + 1 = x/4.

Taking advantage of symmetry, we discover that

a+ b =

√
2x

3
, b+ c =

√
x

6
, and c+ a =

√
3x

8
.

To solve for x, notice that

2 = 2(ab+ bc+ ca)

= (a+ b)2 + (b+ c)2 + (c+ a)2 − 2(a2 + b2 + c2)

=
2x

3
+

x

6
+

3x

8
− 2

(x
2
− 1 +

x

3
− 1 +

x

4
− 1
)

= −23x

24
+ 6,

so x = 96
23 . Therefore,

a+ b+ c =
1

2

(√
2x

3
+

√
x

6
+

√
3x

8

)

=
1

2

(
8 + 4 + 6√

23

)
=

9√
23

.



8. Define sgn(x) to be 1 when x is positive, −1 when x is negative, and 0 when x is 0. Compute

∞∑
n=1

sgn(sin(2n))

2n
.

(The arguments to sin are in radians.)

Proposed by: Karthik Venkata Vedula

Answer: 1− 2
π

Solution: Note that each of following is equivalent to the next.

• sgn(sin(2n)) = +1.

• 0 < 2n mod 2π < π.

• 0 < 2n

π mod 2 < 1.

• The nth digit after the decimal point in the binary representation of 1
π is 0.

Similarly, sgn(sin(2n)) = −1 if and only if the n-th digit after the decimal point in the binary repre-
sentation of 1

π is 1. In particular, if an is the n-th digit, then sgn(sin(2n)) = 1−2an. Thus, the desired
sum is

∞∑
n=1

sgn(sin(2n))

2n
=

∞∑
n=1

1− 2an
2n

=

( ∞∑
n=1

1

2n

)
− 2

( ∞∑
n=1

an
2n

)
= 1− 2

π
.

9. Let f be the unique polynomial of degree at most 2026 such that for all n ∈ {1, 2, 3, . . . , 2027},

f(n) =

{
1 if n is a perfect square,

0 otherwise.

Suppose that a
b is the coefficient of x2025 in f , where a and b are integers such that gcd(a, b) = 1.

Compute the unique integer r between 0 and 2026 (inclusive) such that a − rb is divisible by 2027.
(Note that 2027 is prime.)

Proposed by: Pitchayut Saengrungkongka

Answer: 1037

Solution 1: Let p = 2027. We work in Fp for the entire solution. Recall the well-known fact that

∑
x∈Fp

xk =

{
−1 if k > 0 and p− 1 | k,
0 otherwise,

assuming 00 = 1. In particular, for any polynomial g(x) = b0 + b1x+ · · ·+ bnx
n, we have

−
∑
x∈Fp

g(x) = bp−1 + b2(p−1) + · · ·+ b⌊n/(p−1)⌋(p−1).

We apply this fact on g(x) = xf(x). As deg xf(x) ≤ p, the right hand side is simply the coefficient of
x2025, which is what we want. Hence, the answer is

−
∑
x∈Fp

xf(x) = −(12 + 22 + · · ·+ 452) = −45 · 46 · 91
6

≡ 1037 (mod 2027).



Solution 2: Again, let p = 2027 and work in Fp. By the Lagrange Interpolation formula, we get that

f(x) =
∑
i∈Fp

f(i)
∏
j ̸=i

x− j

i− j
.

We now simplify the polynomial in the product sign on the right-hand side. First, recall the identity∏
j∈Fp

(x− j) = xp − x = (x− i)p − (x− i).

The denominator
∏

j ̸=i(i− j) becomes (p− 1)! = −1 by Wilson’s. Thus, we get that

∏
j ̸=i

x− j

i− j
= − (x− i)p − (x− i)

x− i
= −(x− i)p−1 + 1.

The coefficient of xp−2 in the above expression is −i. Therefore, the first equation gives that the
coefficient of xp−2 in f(x) is∑

i∈Fp

−if(i) = −(12 + 22 + · · ·+ 452) = −45 · 46 · 91
6

≡ 1037 (mod 2027).

10. Let a, b, and c be pairwise distinct complex numbers such that

a2 = b+ 6, b2 = c+ 6, and c2 = a+ 6.

Compute the two possible values of a+ b+ c.

Proposed by: Vasawat Rawangwong

Answer: −1+
√
17

2 , −1−
√
17

2

Solution 1: Notice that any of a, b, or c being 3 or −2 implies a = b = c, which is invalid. Thus,

(a2 − 9)(b2 − 9)(c2 − 9) = (b− 3)(c− 3)(a− 3) =⇒ (a+ 3)(b+ 3)(c+ 3) = 1,

(a2 − 4)(b2 − 4)(c2 − 4) = (b+ 2)(c+ 2)(a+ 2) =⇒ (a− 2)(b− 2)(c− 2) = 1.

Therefore, 2 and −3 are roots of the polynomial (x− a)(x− b)(x− c) + 1, and so there exists some t
such that

(x− t)(x− 2)(x+ 3) = (x− a)(x− b)(x− c) + 1.

Comparing coefficients gives a+ b+ c = t− 1 and ab+ bc+ ca = −(t+ 6). We can then solve for t by
noting a2 + b2 + c2 = (b+ 6) + (c+ 6) + (a+ 6) = a+ b+ c+ 18, so

ab+ bc+ ca =
1

2
((a+ b+ c)2 − (a2 + b2 + c2)) =

1

2
((a+ b+ c)2 − (a+ b+ c+ 18)).

Hence,

−(t+ 6) =
1

2
((t− 1)2 − (t+ 17)) =⇒ t2 − t− 4 = 0 =⇒ t =

1±
√
17

2
.

Therefore a+ b+ c = −1±
√
17

2 are the two possible values of a+ b+ c.

Solution 2: Let s = a + b + c. Subtracting two adjacent equations gives a2 − b2 = b − c, or
(a− b)(a+ b) = (b− c). Multiplying this and its cyclic variants gives

(a+ b)(b+ c)(c+ a) = 1.



Now, we recall the identity

(a+ b+ c)3 = a3 + b3 + c3 + 3(a+ b)(b+ c)(c+ a)

=⇒ s3 = a3 + b3 + c3 + 3.

To simplify a3 + b3 + c3, we add a times the first equation, b times the second, and c times the third
to obtain

a3 + b3 + c3 = a(b+ 6) + b(c+ 6) + c(a+ 6)

= (ab+ bc+ ca) + 6s

= 1
2

(
(a+ b+ c)2 − (a2 + b2 + c2)

)
+ 6s

= 1
2s

2 − 1
2

(
(b+ 6) + (c+ 6) + (a+ 6)

)
+ 6s

= 1
2s

2 + 11
2 s− 9.

Therefore,
s3 = 1

2s
2 + 11

2 s− 6 =⇒
(
s− 3

2

) (
s2 + s− 4

)
= 0.

At this point, the only reasonable guess is that s = 3
2 is an extra solution, and the remaining two roots

s = −1±
√
17

2 are the possible answers. We now justify this guess. Assume for sake of contradiction

that s = 3
2 . Then,

a2 + b2 + c2 = (b+ 6) + (c+ 6) + (a+ 6) = 39
2

ab+ bc+ ca = 1
2

(
9
4 − 39

2

)
= − 69

8 .

Then, observe

abc = (a+ b+ c)(ab+ bc+ ca)− (a+ b)(b+ c)(c+ a)

= − 207
16 − 1 = − 223

16 .

On the other hand,

(a+ 6)(b+ 6)(c+ 6) = 216 + 36(a+ b+ c) + 6(ab+ bc+ ca) + abc

= 216 + 36 · 3
2 − 6 · 69

8 − 223
16 ,

which is a rational number of denominator 16. But (a + 6)(b + 6)(c + 6) = b2c2a2 =
(
− 223

16

)2
has

denominator 162 = 256, a contradiction. Thus s = 3
2 is impossible. (It arises from a = b = c = 1

2 ,
which satisfies (a+ b)(b+ c)(c+ a) = 1 but not the given conditions.)

Solution 3: Subtracting any two adjacent equations gives a2 − b2 = b− c, which is equivalent to both
(a− b)(a+ b) = (b− c) and (a− b)(a+ b+ 1) = (a− c). Multiplying each of these with its respective
cyclic variants and canceling the (a− b)(b− c)(c− a) factor (which is given to be nonzero), we get

(a+ b)(b+ c)(c+ a) = 1 and (a+ b+ 1)(b+ c+ 1)(c+ a+ 1) = −1.

Expanding the latter equation and using the given equations gives the following result.

(a+ b)(b+ c)(c+ a) + (a2 + b2 + c2) + 3(ab+ bc+ ca) + 2(a+ b+ c) + 1 = −1

1 + (b+ 6 + c+ 6 + a+ 6) + 3(ab+ bc+ ca) + 2(a+ b+ c) + 1 = −1

3(a+ b+ c) + 3(ab+ bc+ ca) = −21

a+ b+ c+ ab+ bc+ ca = −7.



Let s = a+ b+ c. We can then solve for s by considering the following:

s2 = (a2 + b2 + c2) + 2(ab+ bc+ ca)

= (b+ 6 + c+ 6 + a+ 6) + 2(−7− a− b− c)

= −s+ 4,

so s = −1±
√
17

2 .

Solution 4: Let s = a+ b+ c and consider the polynomial

x+ (x2 − 6) + ((x2 − 6)2 − 6)− s = x4 − 11x2 + x+ 24− s.

This polynomial has roots a, b, and c. By Vieta’s, the sum of all four roots is 0, so its fourth root must
be −s. Using Vieta’s again, we have ab+ bc+ ca− sa− sb− sc = −11. We can now solve for s.

ab+ bc+ ca− (a+ b+ c)2 = −11

a2 + b2 + c2 + ab+ bc+ ca = 11
1
2 ((a+ b+ c)2 + (a2 + b2 + c2)) = 11

(a+ b+ c)2 + (b+ 6 + c+ 6 + a+ 6) = 22

s2 + s− 4 = 0 =⇒ s =
−1±

√
17

2
.

Remark. Another way to finish using this approach is to substitute −s directly into x4 − 11x2 + x +
24 − s = 0 to get (s − 3)(s + 2)(x2 + x − 4) = 0, then discard the solutions s = 3 and s = −2, which
arise from the invalid values a = b = c = 3 and a = b = c = −2. (In the invalid cases, s ̸= a + b + c
because a = b = c is only a single root to the polynomial.)


