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1. [20] Let a, b, and ¢ be pairwise distinct positive integers such that %, %, - is an increasing arithmetic

sequence in that order. Prove that ged(a,b) > 1.
Proposed by: Srinivas Arun

Solution 1: Observe that 1 + 1 = 2 50 b(a + ¢) = 2ac, and thus a | b(a + ¢). If we assume that
ged(a,b) = 1, then we must have a | a + ¢, so a | ¢. However, % < %, so a > ¢, contradiction. Thus,
ged(a, b) > 1, as desired.

= 1 50 (2a — b)c = ab and thus 2a — b | ab. If we assume

Solution 2: Observe that % — :,
that ged(a,b) = 1, then ged(2a — b,a) = 1, so 2a — b | b. Then 2a — b | (2a — b) + b = 2a, so

2a — b | ged(2a,b) < 2. Thus 2a — b < 2. But a > b, contradiction. Thus, ged(a,b) > 1, as desired.

Q|-

2. [25] A polyomino is a connected figure constructed by joining one or more unit squares edge-to-edge.
Determine, with proof, the number of non-congruent polyominoes with no holes, perimeter 180, and
area 2024.

Proposed by: Albert Wang

Answer:

Solution: Define the bounding box of a polyomino to be the smallest axis-aligned rectangle that
contains the entire polyomino. Suppose a polyomino satisfying the given conditions has a bounding
box with dimensions w X h.

Claim 1. w+ A < 90.

Proof. The polyomino has at least 2w horizontal edges and at least 2h vertical edges. Moreover, it has
a perimeter of 180. Therefore, 2w + 2h < 180, so w + h < 90. O

Claim 2. The dimensions of the bounding box are either 44 x 46, 45 x 45, or 46 x 44.

Proof. Note that hw > 2024 since it contains the polyomino with area 2024. Suppose for sake of
contradiction that h + w < 89. Then,

(h —w)? = (h+w)* — 4hw < 89% — 42024 = —175,

contradiction. Therefore, h +w = 90, so we can let (h,w) = (45 + x,45 — x). Then, 2025 — 22 = hw >
2024 implies that x € {—1,0, 1}, as desired.

O

In the first and third cases, the bounding box has area 2024, so it must be the entire polyomino, giving
us the 44 x 46 rectangle (and its rotation) as a possible answer. In the second case, the bounding box
has area 2025, so one cell must be removed to form the polyomino. Removing the corner cell yields a
polyomino with perimeter 180, and removing any other cells yields a polyomino with perimeter greater
than 180. Therefore, the only other possibility is a 45 x 45 square missing a corner. Thus the answer

is .

3. [30] Let wy and wy be two circles intersecting at distinct points A and B. Point X varies along wy,
and point Y on ws is chosen such that AB bisects the angle ZX AY. Prove that as X varies along wy,
the circumcenter of AAXY (if it exists) varies along a fixed line.

Proposed by: Pitchayut Saengrungkongka

Solution 1:



Let O1, O2, and O be the centers of wy, wa, and the circumcircle of AAXY' | respectively.

We claim that triangle OO0 is isosceles with OO; = OOs, and thus in particular O always lies on
the perpendicular bisector of O10,.

To this end, observe that OO; 1 AX and 0,0, 1 AB, so Z00,0, = /ZXAB. Analogously,
00501 = LY AB. So indeed 00105 is isosceles, and we are done.

Remark. One may also consider the antipodes of A on w; and ws for an equivalent but more natural
angle-chase.

Solution 2:

M* Y*

Qe
"

M A/Y

Let A’ be the A-antipode in circle (AXY"). It suffices to show that A’ lies on a fixed line. We will show
that this line is one that is parallel to AB.

Let M be the second intersection of line AB with circle (AXY), and let N be the antipode of M on
this circle. Since AM A’N is a rectangle with N lying on the line through A perpendicular to AB, it
suffices to show that N is fixed (independent of X and Y').

To this end, take an inversion at A with arbitrary radius, denoting images with e — e*.

Observe that X* and Y* lie on the fixed lines ¢; = wj and 5 = wj. Let ¢ be the line through A
perpendicular to AB*, and suppose that ¢; and /5 intersect £ at P and @), respectively.

Since /ZXAB = /BAY, we have ZX*AB* = /B*AY*. Circles wi, we, and (AXY) are mapped to
lines B*X*, B*Y™*, and X*Y*. As AN | AB, it follows that N* is the intersection of X*Y™* and /.



Finally, observe that (N*, A; P, Q) A (N*,M*; X,Y) is a harmonic bundle, as AM* bisects ZX*AY™*
and ZM*AN* = 90°. Since A, P, and @ are fixed, so is N*. Thus N is fixed, and O lies on the
perpendicular bisector of AN, which is also fixed.

Remark. An alternative approach to the last paragraph is to recall Blanchet’s theorem, which states
that PY™, QX*, and AB* are concurrent. By Ceva and Menelaus, we get that (N*, A; P,Q) = —1.

Remark. If one projects the kite/harmonic quadrilateral NXMY from A’ onto the line through the
antipodes defined in the previous remark, we obtain that A’N (a line parallel to AB) passes through
the midpoint of the two antipodes, directly finishing.

. [35] Jerry places at most one rook in each cell of a 2025 x 2025 grid of cells. A rook attacks another
rook if the two rooks are in the same row or column and there are no other rooks between them.

Determine, with proof, the maximum number of rooks Jerry can place on the grid such that no rook
attacks 4 other rooks.

Proposed by: Arul Kolla

Answer:

Solution 1: The answer is 2024 x 4 = 8096. More generally, for an n x n grid, the answer is 4n — 4.
Call a rook that attacks at most 3 other rooks good.

We use the following observation in both parts of the solution: a rook on the border of the grid must
be good.

Lower Bound: Place rooks on all 4n — 4 border cells of the grid. By the above observation, every
rook is good.

Upper Bound: Consider any valid placement of rooks, and assume there exists a rook that is not on
the border. We can move this rook to the border via a usual rook move, since this rook is good and
thus the path to one of the four border cells in its row or column must be empty.

After this move, we claim the placement of rooks is still valid. Indeed:

e the moved rook is now on the border, so by the observation above, it must be good;

e any rook that used to attack this rook cannot attack more rooks after the move, so such rooks
must still be good;

e any rook attacked in the final position must be either:

— opposite the direction moved, in which case it attacked the moved rook both before and after
the move (so is still good), or

— perpendicular to the direction moved, in which case it is a border rook and must always be
good.

By repeating the above process, we can always move from any good position to one where all rooks are
on the border. This implies that the number of rooks in any good position is at most 4n — 4. When
n = 2024, the answer is 4n — 4 = | 8096 |.

Solution 2: Consider the set of all rooks which are either the leftmost or rightmost in their row, or
the topmost or bottommost in their column. Note that this set must include every rook, as any rook
not in this set attacks a rook in all 4 directions.

Each column contributes at most 2 rooks to this set, and each row contributes at most 2 rooks. We
can safely ignore the top and bottom rows in this count, as any rook in the top or bottom row is
already the topmost or bottommost rook in its column. Thus the number of rooks in the set is at most
2-(2025 42025 — 2) = , which can be constructed as seen before.



5. [iﬂ Let AABC be an acute triangle with orthocenter H. Points £ and F' are on segments - AC and
AB, respectively, such that ZEHF = 90°. Let X be the foot of the altitude from H to EF. Prove
that ZBXC = 90°.

Proposed by: Pitchayut Saengrungkongka

Solution 1:

We use £ to denote directed angles. Let Y and Z be the feet of the altitudes from B and C to AC
and AB, respectively. Then {HZF = {HXF = 90°, so HZF X is cyclic. Similarly, HY EX is cyclic.

Therefore,
ABYX =AHYX =AHEX = AFHX = {F7ZX = {BZX.

Hence, BZXY is cyclic. A symmetric argument shows C' lies on this circle as well. It follows that
/BXC = /ZBYC =90°, as desired.

Solution 2: Let T be the foot of altitude from A to BC. For any point X, let X’ denote the image
of X under the negative inversion at H with radius vVHA - HT. Then B’ and C’ are the feet of the
altitudes from B and C to sides AC' and AB, respectively.

Claim 1. /BX'C = 90°.
Proof. Because HX 1 EF and HE | HF, the quadrilateral HE'X'F’ is a rectangle. Note that

/BFE'H = /EB'H = 90° and Z/X’'E'H = 90°. Consequently, X', B, and E’ are collinear. Similarly,
X', C, and F’ are collinear. Then, /ZBX'C = ZE'X'F’ = 90°, as desired. O

From the claim, X’ lies on the circle with diameter BC' (which B’ and C” also lie on). Since this circle
is invariant under the inversion, X lies on the circle with diameter BC' as well, and ZBXC = 90°.



Solution 3: We begin by proving the following lemma.

Lemma 2. Let ABCD be a quadrilateral and P be a point such that {APB+ £CPD = 180°. Then,
the feet of the altitudes from P to each side of ABC'D are concyclic.

Proof. Let Pa, Pg, Po, Pp the feet of the altitudes from P to AB, BC, CD, and DA respectively.
Note that quadrilateral P4 PPgpB is cyclic. By angle chasing,

APpPaPp + APgPcPp = APpPsP + APPsPg + APgPcP + {PPsPp

= {PpAP + L{PBPg + £PgCP + {PDPp,
= (180° — LAPD) + (180° — £BPC)

= ABPA+ £DPC
= 180°.
Therefore, P4 PgPcPp is cyclic as desired. ]
A
F
F
H




Let P, be the point at infinity on line AC. Let Y and Z be the feet of the altitudes from H to AB
and AC), respectively. Note that /EFHF + /ZBH P,, = 90°4+90° = 180°. Thus, the feet of the altitudes
from H to EF, EB, BP,,, and C'P,, are concyclic. In other words, XY ZB is cyclic. Since BC'Y Z is
a cyclic quadrilateral, we conclude X lies on this circle, giving us that ZBXC = 90° as desired.

Remark. Here’s another way to prove the lemma.

It is well known that, with the provided condition, there is a point P’ that is the isogonal conjugate of
P with respect to quadrilateral ABCD. Let P4, Pg, Pc, and Pp be the feet of the altitudes from P
to AB, BC, CD, and DA, respectively, and let @ be the foot of the altitude from P’ to AB. Because
P and P’ are isogonal conjugates with respect to the triangle formed by lines AB, BC, and CD, we
have P4 PgPcQ is cyclic. Similarly, because P and P’ are also isogonal conjugate with respect to the
triangle formed by lines DA, AB, and BC, we have PpP4Pp(Q is cyclic. Consequently, P4 PgPcPc
is cyclic as desired.

. [40] Complex numbers wy, ..., w, each have magnitude 1. Let z be a complex number distinct from

w1, ..., wy such that
24w 2+ w
S M T Mt L

Z—wp Z— Wnp
Prove that |z| = 1.
Proposed by: Karthik Venkata Vedula

Solution 1: We show that no solutions z not on the unit circle can exist. First, we eliminate |z| > 1.
Claim 1. For all j and |z| > 1, the real part of i—i; is positive.

Proof. We use geometry. Note that w; and —w; are antipodes on the unit circle. Since z lies outside the

unit circle, it follows that Zw;z(—w;) is acute. But this means the complex number jJ_rZJ lies strictly

in the first or fourth quadrant of the complex plane and thus has positive real part, as desired. O

n ztw;
j:1 Z—Wj

has positive real part and thus cannot be

2195 has negative real
zZ—wj

part for all j. Therefore, all solutions z to the original equation must satisfy |z| = 1.

It is then clear that whenever |z| > 1, the sum

0. The case where |z| < 1 is analogous, except Zw;z(—w;) is obtuse instead, so

Solution 2: We show more generally that for any positive integers k, a1, ..., ax, and distinct w; on

the unit circle, the equation
k
2+ w;
aj =0
- z — Wj
=1

J

has k distinct solutions on the unit circle. The original problem then follows upon consolidating
duplicate w;’s. Without loss of generality, assume that wq, ..., wy are in this order going clockwise
around the unit circle.

Claim 2. There is a solution on the (clockwise) arc from w; to w;y; for all j (where wii1 = w).

Proof. First, w; and —w; are antipodes on the unit circle, so if z is on the unit circle, Zw;z(—w;) = 90°
This means jfi] is purely imaginary. Now consider the imaginary part of the left hand side of the
J

equation, which is a real and continuous function on the arc strictly between w; and w;; for each j.
In particular, as z approaches w;;; from the clockwise direction, this function approaches co. On the
other hand, as z approaches w; from the counterclockwise direction, this function approaches —oco. By
the Intermediate Value Theorem, there must be a solution on this arc, as desired. O]



It follows that there are at least k solutions on the unit circle. But the equation is equivalent to a
polynomial of degree k. Hence, there are exactly k solutions, all of which lie on the unit circle.

Remark. The coefficients a;’s are introduced to handle the case where some of wy,...,w, are equal.
Another way to get around this case is to utilize the fact that roots of polynomials are continuous, so
we can take the limit where several w;’s approach each other.

Remark. The Mobius transformation z +— zzj& sends the unit circle to a real line. One can rephrase

both solutions as working on the real line instead of the unit circle.

. [45] Determine, with proof, whether a square can be dissected into finitely many (not necessarily
congruent) triangles, each of which has interior angles 30°, 75°, and 75°.

Proposed by: Derek Liu

Answer:

Solution 1: Assume for sake of contradiction that such a dissection exists. It has exactly half as many
30° angles as 75° angles.

Around any intersection point except the square’s vertices, the only angles that can appear are 30°,
75°, and 180°. The only combinations of these that sum to 180° or 360° are

6-30° = 180°,

30° +2- 75° = 180°,
180° = 180°,

12 - 30° = 360°,

7-30°+2-75° = 360°,
2-30°+4-75° = 360°,
6-30° + 180° = 360°,

30° +2-75° 4 180° = 360°,
180° 4 180° = 360°.

In particular, around any such point, there are at least half as many 30° angles as 75° angles.

However, the square’s vertices must each be surrounded by three 30° angles and zero 75° angles, as
there is no other way to get a sum of 90°. Thus the total number of 30° angles in the dissection must
be at least 12 more than half the number of 75° angles, contradiction.

Thus no such dissection exists.

Solution 2: Again assume for sake of contradiction that a dissection exists. Interpret the dissection
as a graph G, where the vertices of the graph are the vertices of all the triangles, and edges connect
each pair of consecutive vertices along a line segment.

Call a vertex flat if it is on either the boundary of the square (including its corners) or the interior of
an edge of any triangle. Let X be the number of flat vertices and Y be the number of non-flat vertices
in G. Let E and F be the number of edges and faces (triangles) in the dissection, respectively. Then
(X+Y)-E+F=1.

Observing the angle combinations in the first solution, we see that any non-flat vertex must have at
least 6 incident edges, and any flat vertex must have at least 4. Thus 2E > 6Y +4X,so E > 3Y +2X.

The sum of the angles of all F' triangles is mF. Around any non-flat vertex, such angles sum to 2.
Around any flat vertex, the angles sum to m, with the exception of the four corners of the square, where
they sum to 7/2 instead. Thus

Fr=(X-4)n+4(r/2)+Y(2r) = (X +2Y — 2),



so F'= X +2Y — 2. This means
X+Y-FE+F<(X+4Y)-@BY +2X)+ (X +2Y —2)=-2,

contradiction. Thus no dissection exists.

. [50] Let AABC be a triangle with incenter I. The incircle of triangle AABC touches BC at D. Let
M be the midpoint of BC, and let line AI meet the circumcircle of triangle AABC again at L # A.
Let w be the circle centered at L tangent to AB and AC. If w intersects segment AD at point P, prove
that ZIPM = 90°.

Proposed by: Pitchayut Saengrungkongka

Solution 1: Let X and Y be the bottom and top point on w (i.e., the tangents of X and Y to w are
parallel to BC, and Y and A lie on the same side of BC). Note that A, P, D, and X are collinear by
homothety between the incircle and w. The key claim is the following.

Claim 1. Line IY is tangent to w.

Proof. Let the line through I parallel to BC meet AB and AC at B’ and C’, respectively. Notice that
B'L is the perpendicular bisector of BI, so B’'L externally bisects ZAB'C’. Similarly, C'L externally
bisects ZAC'B’. Hence, L is the excenter of AAB’C’, which means that B’C’ is tangent to w. O

X

Now, we note that LY | BC, so L, Y, and M are collinear (on the perpendicular bisector of BC).
Since LY PX =90° and ZYMD = 90°, PDMY is cyclic. However, IY M D is a rectangle, so IPDMY
is a cyclic pentagon. Hence, ZIPM = ZIDM = 90°.

Solution 2: Let the incircle touch AC' and AB at E and F, respectively. Let DI intersect EF at X.
Let D’ be the other intersection of AD and the incircle.



Claim 2. PM | D'X.

Proof. Consider the homothety at A that sends w to the incircle. It sends L to I and P to D'.
Furthermore, it’s well-known that X lies on AM. Because IX || LM, we also have that the homothety

sends M to X. These facts imply that D'X || PM. O
A
p\ ¥
p 1
Tl
B D M C
L

Let T be the antipode of D on the incircle. Let AT intersect the incircle again at T”. Since X lies on
the polar of A with respect to the incircle, by Brocard’s theorem, we have D', X, and T" are collinear.
It is well-known that AT || IM. Therefore, /ZDPM = /DD'X = /DD'T" = /DTT' = ZDIM.
Consequently, IM DP is cyclic, and ZIPM = ZIDM = 90°.

Solution 3: Let w be tangent to AB and AC at E and F', respectively. Note that these are the feet
of the altitudes from L to AB and AC, and L lies on the circumcircle of AABC by Fact 5. As M is
clearly the foot from L to BC, it follows that E, F', and M are collinear on the Simson Line of L with
respect to AABC.

Lastly, we want P to be on the circle with diameter /M. This circle intersects EF again at the foot
from M to AI, which is the midpoint of EF. Let this point be M’. Consider the homothety sending
the incircle to w. This clearly sends D to the second intersection of AD and w, which is P/, and it
sends I to L. Note that AP - AP’ = AE? = AM - AL, as the circle with diameter LE is tangent to
AE. Thus, PP'M'L is cyclic. Since ID || LP’, I lies on M'L, and D lies on PP’. By Reim’s, we also
have PDM'T is cyclic. As IM is a diameter of (DM'I), we have ZIPM = 90°.



9. [60] Let Z be the set of integers. Determine, with proof, all primes p for which there exists a function
f:Z — 7Z such that for any integer =z,

o f(z+p) = f(x) and
o p divides f(x + f(x)) — .

Proposed by: Marin Hristov Hristov

Answer: ‘ p =5 and all primes p = £+1 (mod 5) ‘

Solution: We work in F), treating f as a map from F, to itself. Clearly, p = 2 doesn’t work. For
p > 2 such that 5 is a quadratic residue mod p, as well as p = 5 itself, there exists some « such that
(2a+1)?2 =5 (mod p). Taking f(z) = ax then works because

f(x+f(x))—1:=(oz2—|—oz—1)x:%((2@+1)2—5)x50 (mod p).

To prove no other primes satisfy the conditions in the problem statement, note that f is surjective, as
for any z, f(z + f(z)) = x. As T, is finite, f is bijective. Plugging in x = f(y) yields

FUEW+FFW)) = fly) = fy)+ (1Y) =y

Since f is bijective, there exists z € F, such that f(z) = 0, then z = f(z+ f(2)) = f(z) = 0. Therefore,
f(0) = 0. This is the only fixed point, as any fixed point d would satisfy d = f(d) + f(f(d)) = 2d,



which is impossible if d # 0. Hence the remaining residues form nontrivial cycles y, f(y), f(f(y)), etc.
If the cycle containing y is of length n, then

') =y+fy),
W) ="y +y=2y+ fy),
F7U VW) = fy) = Fay + Fai f (), (by induction)

y=Fopy+ Fuf(y),

where Fj, is the k-th Fibonacci number. As y # 0 and f(y) # 0, the last two equations tell us

Let A= F,41 —1and B = F,,_1 — 1 for brevity. The last equation becomes

(A-B)*=AB=—((A+B)?>-(A—B)?) (modp) = (A+ B)>=5(A— B)? (mod p).

N

As 5 is not a quadratic residue, this implies Fj,41 = Fj,—1 = 1 (mod p). Hence, if d is the smallest
positive integer such that F; = 0 (mod p) and Fy11 = 1 (mod p), then the Fibonacci sequence is
periodic modulo p with period d, so d | n. The sum of all cycle lengths (excluding the fixed point 0) is
p—1,s0d|p— 1. The following well-known lemma will give us a contradiction.

Lemma 1. If 5 is not a quadratic residue modulo a prime p, then p{ F,_;.

Proof 1. Recall Binet’s formula,

o [(eBY T (1-vB)
WV 2 2

Multiplying both sides by 2P~! and expanding via the binomial theorem, we have

p=3
2 -1
or—1p =25 5k P .
p—l kZ:O 2% +

However, (21;;11) = (—1)?**! = —1 (mod p) for all k, so
5 p1
57 —1
plFpo1 ifandonlyif p|) 5% = ﬁ
k=0

Therefore p | F_; if and only if 55 =1 (mod p), which doesn’t hold if 5 is not a quadratic residue
modulo p, as desired. O

Proof 2. Work in Fp2 = Iﬁ‘p[\/g]. Since 5 is not a quadratic residue, we get that (v/5)? = —/5. Using
the fact that (a 4+ b)? = aP + bP (because all other terms have coefficient divisible by p), we get that

<1+¢s>p:1_¢5 . <1+¢5>’”:<1—¢5>2:3—¢5

2 2 2 2 2



10.

p—1 .
Similarly, (1"/5) = % Hence, by Binet’s formula,

2
p—1 p—1
poo_ 1 1+5 (1=
N+ 2 2

(3—\/5_3+\/5> _

2 2

Sl

so it is not divisible by p. O

Hence, F,_1 # 0 (mod p) if 5 is not a quadratic residue modulo p, which contradicts d | p — 1 above.
This completes the solution.

[60] Determine, with proof, all possible values of ged(a? + b? + ¢, abc) across all triples of positive
integers (a, b, ¢).

Proposed by: Henrick Rabinovitz

Answer: ‘ All positive integers n such that v,(n) # 1 for all prime p =3 (mod 4) ‘

Solution: First, we show that no other n work. If there does exist prime p = 3 (mod 4) such that
vp(n) = 1, then p | abc; without loss of generality, assume p divides a. Then, p? | a® and p | a® +b*+¢?,
so p | b2 + c®. Since p is 3 modulo 4, —1 is not a quadratic residue modulo p, so b*> = —c? (mod p)
only has the trivial solution (b, c) = 0. Therefore p | b and p | ¢, so p? | n. This contradicts v,(n) = 1,
so no solutions outside of the claimed solution set exist.

Now, we give the construction. Let n be in the claimed solution set. We proceed in two steps.

Step 1 (Local step). For each prime p dividing n, we will construct a, b, and ¢ modulo pY»(M+1 guch
that v, (ged(a? + b* + 2, abc)) = vp(n).

We have a couple cases.

e If v,(n) = 2k for some positive integer k, pick a = p*, b = p*, and ¢ = p**! for p # 2 and pick
a=b=c=p" for p=2.

o If p #Z 3 (mod 4) and v,(n) = 2k + 1 for some nonnegative integer k, then by Fermat’s
Christmas theorem, there are positive integers 2 and y for which z? +3? = p. Then pick a = zp*,
b=yp*, and c = pFtL.

o If p = 3 (mod 4) and vp(n) = 2k + 1 for some nonnegative integer k, then k > 1 by
assumption. We let z and y be positive integers for which Vp(£C2 + 9% 4+ 1) = 1. (This is fairly
standard. To briefly recall the proof, note that x and y satisfying #2 + 1 = —y? (mod p) exist because some
quadratic residue must be adjacent to a nonquadratic residue, and forcing 22 4+ 1 #Z —y? (mod p?) can be done by
adding appropriate multiples of p to z or y.) Then, pick a = xpk, b= ypk, and ¢ = pk.

Step 2 (Global step). Given solutions (ay, by, ¢,) modulo p»(M+1 for each prime p | n, we construct
a working solution (a, b, ¢) over positive integers.

By Chinese Remainder Theorem, we can pick positive integers a, b, and ¢ such that for all prime p | n,
(a,b,¢) = (ap,bp,cp) (mod p*»(M+1). Now, we need to modify this construction to ensure that no
other primes divide ged(a? + b% + ¢2, abe).

For every prime p | ¢ with p 1 n, we modify a and b (by adding additional congruence relations) so that
p does not divide a? + b%. Then, p does not divide ged(a? + b% + ¢2, abc) for any prime p such that p | ¢



and pt{n. Let

N = H pup(n)—o—l’

plen

S = {primes p such that p | ab but p{cn},

P:Hp“"(N) =1 (mod N).
peS

In particular, we have only fixed residues of a,b,c modulo N at this point. Now, let a; = aP and
by = bP. This keeps all of our mod N conditions. We now claim that (a1,by, ¢) works. To prove this,

fix a prime p, and note that

e if p divides cn, then since ' = a (mod N) and & = b (mod N), we have v,(ged(a? + b3 +
%, a1bic)) = vp(n) from our construction of (a,b, c).

e if p € S, then we note that p divides a? + b?, but not ¢2, so p does not divide a? + b? + 2.

e if p& S and p 1 cn, then p does not divide a;b;c.

This concludes the proof.



