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1. [20] Let a, b, and c be pairwise distinct positive integers such that 1
a ,

1
b ,

1
c is an increasing arithmetic

sequence in that order. Prove that gcd(a, b) > 1.

Proposed by: Srinivas Arun

Solution 1: Observe that 1
a + 1

c = 2
b , so b(a + c) = 2ac, and thus a | b(a + c). If we assume that

gcd(a, b) = 1, then we must have a | a + c, so a | c. However, 1
a < 1

c , so a > c, contradiction. Thus,
gcd(a, b) > 1, as desired.

Solution 2: Observe that 2
b − 1

a = 1
c , so (2a − b)c = ab and thus 2a − b | ab. If we assume

that gcd(a, b) = 1, then gcd(2a − b, a) = 1, so 2a − b | b. Then 2a − b | (2a − b) + b = 2a, so
2a− b | gcd(2a, b) ≤ 2. Thus 2a− b ≤ 2. But a > b, contradiction. Thus, gcd(a, b) > 1, as desired.

2. [25] A polyomino is a connected figure constructed by joining one or more unit squares edge-to-edge.
Determine, with proof, the number of non-congruent polyominoes with no holes, perimeter 180, and
area 2024.

Proposed by: Albert Wang

Answer: 2

Solution: Define the bounding box of a polyomino to be the smallest axis-aligned rectangle that
contains the entire polyomino. Suppose a polyomino satisfying the given conditions has a bounding
box with dimensions w × h.

Claim 1. w + h ≤ 90.

Proof. The polyomino has at least 2w horizontal edges and at least 2h vertical edges. Moreover, it has
a perimeter of 180. Therefore, 2w + 2h ≤ 180, so w + h ≤ 90.

Claim 2. The dimensions of the bounding box are either 44× 46, 45× 45, or 46× 44.

Proof. Note that hw ≥ 2024 since it contains the polyomino with area 2024. Suppose for sake of
contradiction that h+ w ≤ 89. Then,

(h− w)2 = (h+ w)2 − 4hw ≤ 892 − 4 · 2024 = −175,

contradiction. Therefore, h+w = 90, so we can let (h,w) = (45+ x, 45− x). Then, 2025− x2 = hw ≥
2024 implies that x ∈ {−1, 0, 1}, as desired.

In the first and third cases, the bounding box has area 2024, so it must be the entire polyomino, giving
us the 44× 46 rectangle (and its rotation) as a possible answer. In the second case, the bounding box
has area 2025, so one cell must be removed to form the polyomino. Removing the corner cell yields a
polyomino with perimeter 180, and removing any other cells yields a polyomino with perimeter greater
than 180. Therefore, the only other possibility is a 45× 45 square missing a corner. Thus the answer
is 2 .

3. [30] Let ω1 and ω2 be two circles intersecting at distinct points A and B. Point X varies along ω1,
and point Y on ω2 is chosen such that AB bisects the angle ∠XAY . Prove that as X varies along ω1,
the circumcenter of △AXY (if it exists) varies along a fixed line.

Proposed by: Pitchayut Saengrungkongka

Solution 1:
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Let O1, O2, and O be the centers of ω1, ω2, and the circumcircle of △AXY , respectively.

We claim that triangle OO1O2 is isosceles with OO1 = OO2, and thus in particular O always lies on
the perpendicular bisector of O1O2.

To this end, observe that OO1 ⊥ AX and O1O2 ⊥ AB, so ∠OO1O2 = ∠XAB. Analogously,
∠OO2O1 = ∠Y AB. So indeed OO1O2 is isosceles, and we are done.

Remark. One may also consider the antipodes of A on ω1 and ω2 for an equivalent but more natural
angle-chase.

Solution 2:

X

Y

A

B
O

A′M

N

X∗

Y ∗

B∗

A

M∗

QP N∗

Let A′ be the A-antipode in circle (AXY ). It suffices to show that A′ lies on a fixed line. We will show
that this line is one that is parallel to AB.

Let M be the second intersection of line AB with circle (AXY ), and let N be the antipode of M on
this circle. Since AMA′N is a rectangle with N lying on the line through A perpendicular to AB, it
suffices to show that N is fixed (independent of X and Y ).

To this end, take an inversion at A with arbitrary radius, denoting images with • 7→ •∗.
Observe that X∗ and Y ∗ lie on the fixed lines ℓ1 = ω∗

1 and ℓ2 = ω∗
2 . Let ℓ be the line through A

perpendicular to AB∗, and suppose that ℓ1 and ℓ2 intersect ℓ at P and Q, respectively.

Since ∠XAB = ∠BAY , we have ∠X∗AB∗ = ∠B∗AY ∗. Circles ω1, ω2, and (AXY ) are mapped to
lines B∗X∗, B∗Y ∗, and X∗Y ∗. As AN ⊥ AB, it follows that N∗ is the intersection of X∗Y ∗ and ℓ.



Finally, observe that (N∗, A;P,Q)
B∗

= (N∗,M∗;X,Y ) is a harmonic bundle, as AM∗ bisects ∠X∗AY ∗

and ∠M∗AN∗ = 90◦. Since A, P , and Q are fixed, so is N∗. Thus N is fixed, and O lies on the
perpendicular bisector of AN , which is also fixed.

Remark. An alternative approach to the last paragraph is to recall Blanchet’s theorem, which states
that PY ∗, QX∗, and AB∗ are concurrent. By Ceva and Menelaus, we get that (N∗, A;P,Q) = −1.

Remark. If one projects the kite/harmonic quadrilateral NXMY from A′ onto the line through the
antipodes defined in the previous remark, we obtain that A′N (a line parallel to AB) passes through
the midpoint of the two antipodes, directly finishing.

4. [35] Jerry places at most one rook in each cell of a 2025 × 2025 grid of cells. A rook attacks another
rook if the two rooks are in the same row or column and there are no other rooks between them.

Determine, with proof, the maximum number of rooks Jerry can place on the grid such that no rook
attacks 4 other rooks.

Proposed by: Arul Kolla

Answer: 8096

Solution 1: The answer is 2024× 4 = 8096. More generally, for an n× n grid, the answer is 4n− 4.
Call a rook that attacks at most 3 other rooks good.

We use the following observation in both parts of the solution: a rook on the border of the grid must
be good.

Lower Bound: Place rooks on all 4n − 4 border cells of the grid. By the above observation, every
rook is good.

Upper Bound: Consider any valid placement of rooks, and assume there exists a rook that is not on
the border. We can move this rook to the border via a usual rook move, since this rook is good and
thus the path to one of the four border cells in its row or column must be empty.

After this move, we claim the placement of rooks is still valid. Indeed:

• the moved rook is now on the border, so by the observation above, it must be good;

• any rook that used to attack this rook cannot attack more rooks after the move, so such rooks
must still be good;

• any rook attacked in the final position must be either:

– opposite the direction moved, in which case it attacked the moved rook both before and after
the move (so is still good), or

– perpendicular to the direction moved, in which case it is a border rook and must always be
good.

By repeating the above process, we can always move from any good position to one where all rooks are
on the border. This implies that the number of rooks in any good position is at most 4n − 4. When
n = 2024, the answer is 4n− 4 = 8096 .

Solution 2: Consider the set of all rooks which are either the leftmost or rightmost in their row, or
the topmost or bottommost in their column. Note that this set must include every rook, as any rook
not in this set attacks a rook in all 4 directions.

Each column contributes at most 2 rooks to this set, and each row contributes at most 2 rooks. We
can safely ignore the top and bottom rows in this count, as any rook in the top or bottom row is
already the topmost or bottommost rook in its column. Thus the number of rooks in the set is at most
2 · (2025 + 2025− 2) = 8096 , which can be constructed as seen before.



5. [35] Let △ABC be an acute triangle with orthocenter H. Points E and F are on segments AC and
AB, respectively, such that ∠EHF = 90◦. Let X be the foot of the altitude from H to EF . Prove
that ∠BXC = 90◦.

Proposed by: Pitchayut Saengrungkongka

Solution 1:
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We use ∡ to denote directed angles. Let Y and Z be the feet of the altitudes from B and C to AC
and AB, respectively. Then ∡HZF = ∡HXF = 90◦, so HZFX is cyclic. Similarly, HY EX is cyclic.
Therefore,

∡BYX = ∡HYX = ∡HEX = ∡FHX = ∡FZX = ∡BZX.

Hence, BZXY is cyclic. A symmetric argument shows C lies on this circle as well. It follows that
∠BXC = ∠BY C = 90◦, as desired.

Solution 2: Let T be the foot of altitude from A to BC. For any point X, let X ′ denote the image
of X under the negative inversion at H with radius

√
HA ·HT . Then B′ and C ′ are the feet of the

altitudes from B and C to sides AC and AB, respectively.

Claim 1. ∠BX ′C = 90◦.

Proof. Because HX ⊥ EF and HE ⊥ HF , the quadrilateral HE′X ′F ′ is a rectangle. Note that
∠BE′H = ∠EB′H = 90◦ and ∠X ′E′H = 90◦. Consequently, X ′, B, and E′ are collinear. Similarly,
X ′, C, and F ′ are collinear. Then, ∠BX ′C = ∠E′X ′F ′ = 90◦, as desired.

From the claim, X ′ lies on the circle with diameter BC (which B′ and C ′ also lie on). Since this circle
is invariant under the inversion, X lies on the circle with diameter BC as well, and ∠BXC = 90◦.
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Solution 3: We begin by proving the following lemma.

Lemma 2. Let ABCD be a quadrilateral and P be a point such that ∡APB+∡CPD = 180◦. Then,
the feet of the altitudes from P to each side of ABCD are concyclic.

Proof. Let PA, PB , PC , PD the feet of the altitudes from P to AB, BC, CD, and DA respectively.
Note that quadrilateral PAPPBB is cyclic. By angle chasing,

∡PDPAPB + ∡PBPCPD = ∡PDPAP + ∡PPAPB + ∡PBPCP + ∡PPCPD

= ∡PDAP + ∡PBPB + ∡PBCP + ∡PDPD

= (180◦ − ∡APD) + (180◦ − ∡BPC)

= ∡BPA+ ∡DPC

= 180◦.

Therefore, PAPBPCPD is cyclic as desired.
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Let P∞ be the point at infinity on line AC. Let Y and Z be the feet of the altitudes from H to AB
and AC, respectively. Note that ∠EHF +∠BHP∞ = 90◦+90◦ = 180◦. Thus, the feet of the altitudes
from H to EF , EB, BP∞, and CP∞ are concyclic. In other words, XY ZB is cyclic. Since BCY Z is
a cyclic quadrilateral, we conclude X lies on this circle, giving us that ∠BXC = 90◦ as desired.

Remark. Here’s another way to prove the lemma.

It is well known that, with the provided condition, there is a point P ′ that is the isogonal conjugate of
P with respect to quadrilateral ABCD. Let PA, PB , PC , and PD be the feet of the altitudes from P
to AB, BC, CD, and DA, respectively, and let Q be the foot of the altitude from P ′ to AB. Because
P and P ′ are isogonal conjugates with respect to the triangle formed by lines AB, BC, and CD, we
have PAPBPCQ is cyclic. Similarly, because P and P ′ are also isogonal conjugate with respect to the
triangle formed by lines DA, AB, and BC, we have PDPAPBQ is cyclic. Consequently, PAPBPCPC

is cyclic as desired.

6. [40] Complex numbers ω1, . . . , ωn each have magnitude 1. Let z be a complex number distinct from
ω1, . . . , ωn such that

z + ω1

z − ω1
+ · · ·+ z + ωn

z − ωn
= 0.

Prove that |z| = 1.

Proposed by: Karthik Venkata Vedula

Solution 1: We show that no solutions z not on the unit circle can exist. First, we eliminate |z| > 1.

Claim 1. For all j and |z| > 1, the real part of
z+ωj

z−ωj
is positive.

Proof. We use geometry. Note that ωj and −ωj are antipodes on the unit circle. Since z lies outside the

unit circle, it follows that ∠ωjz(−ωj) is acute. But this means the complex number
z+ωj

z−ωj
lies strictly

in the first or fourth quadrant of the complex plane and thus has positive real part, as desired.

It is then clear that whenever |z| > 1, the sum
∑n

j=1
z+ωj

z−ωj
has positive real part and thus cannot be

0. The case where |z| < 1 is analogous, except ∠ωjz(−ωj) is obtuse instead, so
z+ωj

z−ωj
has negative real

part for all j. Therefore, all solutions z to the original equation must satisfy |z| = 1.

Solution 2: We show more generally that for any positive integers k, a1, . . ., ak, and distinct ωj on
the unit circle, the equation

k∑
j=1

aj

(
z + ωi

z − ωj

)
= 0

has k distinct solutions on the unit circle. The original problem then follows upon consolidating
duplicate ωj ’s. Without loss of generality, assume that ω1, . . ., ωk are in this order going clockwise
around the unit circle.

Claim 2. There is a solution on the (clockwise) arc from ωj to ωj+1 for all j (where ωk+1 = ω1).

Proof. First, ωj and −ωj are antipodes on the unit circle, so if z is on the unit circle, ∠ωjz(−ωj) = 90◦

This means
z+ωj

z−ωj
is purely imaginary. Now consider the imaginary part of the left hand side of the

equation, which is a real and continuous function on the arc strictly between ωj and ωj+1 for each j.
In particular, as z approaches ωj+1 from the clockwise direction, this function approaches ∞. On the
other hand, as z approaches ωj from the counterclockwise direction, this function approaches −∞. By
the Intermediate Value Theorem, there must be a solution on this arc, as desired.



It follows that there are at least k solutions on the unit circle. But the equation is equivalent to a
polynomial of degree k. Hence, there are exactly k solutions, all of which lie on the unit circle.

Remark. The coefficients aj ’s are introduced to handle the case where some of ω1, . . . , ωn are equal.
Another way to get around this case is to utilize the fact that roots of polynomials are continuous, so
we can take the limit where several ωj ’s approach each other.

Remark. The Möbius transformation z 7→ i z−1
z+1 sends the unit circle to a real line. One can rephrase

both solutions as working on the real line instead of the unit circle.

7. [45] Determine, with proof, whether a square can be dissected into finitely many (not necessarily
congruent) triangles, each of which has interior angles 30◦, 75◦, and 75◦.

Proposed by: Derek Liu

Answer: No

Solution 1: Assume for sake of contradiction that such a dissection exists. It has exactly half as many
30◦ angles as 75◦ angles.

Around any intersection point except the square’s vertices, the only angles that can appear are 30◦,
75◦, and 180◦. The only combinations of these that sum to 180◦ or 360◦ are

6 · 30◦ = 180◦,

30◦ + 2 · 75◦ = 180◦,

180◦ = 180◦,

12 · 30◦ = 360◦,

7 · 30◦ + 2 · 75◦ = 360◦,

2 · 30◦ + 4 · 75◦ = 360◦,

6 · 30◦ + 180◦ = 360◦,

30◦ + 2 · 75◦ + 180◦ = 360◦,

180◦ + 180◦ = 360◦.

In particular, around any such point, there are at least half as many 30◦ angles as 75◦ angles.

However, the square’s vertices must each be surrounded by three 30◦ angles and zero 75◦ angles, as
there is no other way to get a sum of 90◦. Thus the total number of 30◦ angles in the dissection must
be at least 12 more than half the number of 75◦ angles, contradiction.

Thus no such dissection exists.

Solution 2: Again assume for sake of contradiction that a dissection exists. Interpret the dissection
as a graph G, where the vertices of the graph are the vertices of all the triangles, and edges connect
each pair of consecutive vertices along a line segment.

Call a vertex flat if it is on either the boundary of the square (including its corners) or the interior of
an edge of any triangle. Let X be the number of flat vertices and Y be the number of non-flat vertices
in G. Let E and F be the number of edges and faces (triangles) in the dissection, respectively. Then
(X + Y )− E + F = 1.

Observing the angle combinations in the first solution, we see that any non-flat vertex must have at
least 6 incident edges, and any flat vertex must have at least 4. Thus 2E ≥ 6Y +4X, so E ≥ 3Y +2X.

The sum of the angles of all F triangles is πF . Around any non-flat vertex, such angles sum to 2π.
Around any flat vertex, the angles sum to π, with the exception of the four corners of the square, where
they sum to π/2 instead. Thus

Fπ = (X − 4)π + 4(π/2) + Y (2π) = (X + 2Y − 2)π,



so F = X + 2Y − 2. This means

X + Y − E + F ≤ (X + Y )− (3Y + 2X) + (X + 2Y − 2) = −2,

contradiction. Thus no dissection exists.

8. [50] Let △ABC be a triangle with incenter I. The incircle of triangle △ABC touches BC at D. Let
M be the midpoint of BC, and let line AI meet the circumcircle of triangle △ABC again at L ̸= A.
Let ω be the circle centered at L tangent to AB and AC. If ω intersects segment AD at point P , prove
that ∠IPM = 90◦.

Proposed by: Pitchayut Saengrungkongka

Solution 1: Let X and Y be the bottom and top point on ω (i.e., the tangents of X and Y to ω are
parallel to BC, and Y and A lie on the same side of BC). Note that A, P , D, and X are collinear by
homothety between the incircle and ω. The key claim is the following.

Claim 1. Line IY is tangent to ω.

Proof. Let the line through I parallel to BC meet AB and AC at B′ and C ′, respectively. Notice that
B′L is the perpendicular bisector of BI, so B′L externally bisects ∠AB′C ′. Similarly, C ′L externally
bisects ∠AC ′B′. Hence, L is the excenter of △AB′C ′, which means that B′C ′ is tangent to ω.
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Now, we note that LY ⊥ BC, so L, Y , and M are collinear (on the perpendicular bisector of BC).
Since ∠Y PX = 90◦ and ∠YMD = 90◦, PDMY is cyclic. However, IY MD is a rectangle, so IPDMY
is a cyclic pentagon. Hence, ∠IPM = ∠IDM = 90◦.

Solution 2: Let the incircle touch AC and AB at E and F , respectively. Let DI intersect EF at X.
Let D′ be the other intersection of AD and the incircle.



Claim 2. PM ∥ D′X.

Proof. Consider the homothety at A that sends ω to the incircle. It sends L to I and P to D′.
Furthermore, it’s well-known that X lies on AM . Because IX ∥ LM , we also have that the homothety
sends M to X. These facts imply that D′X ∥ PM .
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Let T be the antipode of D on the incircle. Let AT intersect the incircle again at T ′. Since X lies on
the polar of A with respect to the incircle, by Brocard’s theorem, we have D′, X, and T ′ are collinear.
It is well-known that AT ∥ IM . Therefore, ∠DPM = ∠DD′X = ∠DD′T ′ = ∠DTT ′ = ∠DIM.
Consequently, IMDP is cyclic, and ∠IPM = ∠IDM = 90◦.

Solution 3: Let ω be tangent to AB and AC at E and F , respectively. Note that these are the feet
of the altitudes from L to AB and AC, and L lies on the circumcircle of △ABC by Fact 5. As M is
clearly the foot from L to BC, it follows that E, F , and M are collinear on the Simson Line of L with
respect to △ABC.

Lastly, we want P to be on the circle with diameter IM . This circle intersects EF again at the foot
from M to AI, which is the midpoint of EF . Let this point be M ′. Consider the homothety sending
the incircle to ω. This clearly sends D to the second intersection of AD and ω, which is P ′, and it
sends I to L. Note that AP · AP ′ = AE2 = AM · AL, as the circle with diameter LE is tangent to
AE. Thus, PP ′M ′L is cyclic. Since ID ∥ LP ′, I lies on M ′L, and D lies on PP ′. By Reim’s, we also
have PDM ′I is cyclic. As IM is a diameter of (DM ′I), we have ∠IPM = 90◦.
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9. [60] Let Z be the set of integers. Determine, with proof, all primes p for which there exists a function
f : Z → Z such that for any integer x,

• f(x+ p) = f(x) and

• p divides f(x+ f(x))− x.

Proposed by: Marin Hristov Hristov

Answer: p = 5 and all primes p ≡ ±1 (mod 5)

Solution: We work in Fp, treating f as a map from Fp to itself. Clearly, p = 2 doesn’t work. For
p > 2 such that 5 is a quadratic residue mod p, as well as p = 5 itself, there exists some α such that
(2α+ 1)2 ≡ 5 (mod p). Taking f(x) = αx then works because

f(x+ f(x))− x = (α2 + α− 1)x =
1

4

(
(2α+ 1)2 − 5

)
x ≡ 0 (mod p).

To prove no other primes satisfy the conditions in the problem statement, note that f is surjective, as
for any x, f(x+ f(x)) = x. As Fp is finite, f is bijective. Plugging in x = f(y) yields

f(f(y) + f(f(y))) = f(y) =⇒ f(y) + f(f(y)) = y.

Since f is bijective, there exists z ∈ Fp such that f(z) = 0, then z = f(z+f(z)) = f(z) = 0. Therefore,
f(0) = 0. This is the only fixed point, as any fixed point d would satisfy d = f(d) + f(f(d)) = 2d,



which is impossible if d ̸= 0. Hence the remaining residues form nontrivial cycles y, f(y), f(f(y)), etc.
If the cycle containing y is of length n, then

f−1(y) = y + f(y),

f−2(y) = f−1(y) + y = 2y + f(y),

...

f−(n−1)(y) = f(y) = Fny + Fn−1f(y), (by induction)

y = Fn+1y + Fnf(y),

where Fk is the k-th Fibonacci number. As y ̸= 0 and f(y) ̸= 0, the last two equations tell us

F 2
n ≡

(
(1− Fn−1)f(y)

y

)(
(1− Fn+1)y

f(y)

)
≡ (Fn+1 − 1)(Fn−1 − 1) (mod p).

Let A = Fn+1 − 1 and B = Fn−1 − 1 for brevity. The last equation becomes

(A−B)2 ≡ AB ≡ 1

4
((A+B)2 − (A−B)2) (mod p) =⇒ (A+B)2 ≡ 5(A−B)2 (mod p).

As 5 is not a quadratic residue, this implies Fn+1 ≡ Fn−1 ≡ 1 (mod p). Hence, if d is the smallest
positive integer such that Fd ≡ 0 (mod p) and Fd+1 ≡ 1 (mod p), then the Fibonacci sequence is
periodic modulo p with period d, so d | n. The sum of all cycle lengths (excluding the fixed point 0) is
p− 1, so d | p− 1. The following well-known lemma will give us a contradiction.

Lemma 1. If 5 is not a quadratic residue modulo a prime p, then p ∤ Fp−1.

Proof 1. Recall Binet’s formula,

Fp−1 =
1√
5

(1 +
√
5

2

)p−1

−

(
1−

√
5

2

)p−1
 .

Multiplying both sides by 2p−1 and expanding via the binomial theorem, we have

2p−1Fp−1 = 2

p−3
2∑

k=0

5k
(

p− 1

2k + 1

)
.

However,
(
p−1
2k+1

)
≡ (−1)2k+1 ≡ −1 (mod p) for all k, so

p | Fp−1 if and only if p

∣∣∣∣∣∣
p−3
2∑

k=0

5k =
5

p−1
2 − 1

5− 1
.

Therefore p | Fp−1 if and only if 5
p−1
2 ≡ 1 (mod p), which doesn’t hold if 5 is not a quadratic residue

modulo p, as desired.

Proof 2. Work in Fp2 = Fp[
√
5]. Since 5 is not a quadratic residue, we get that (

√
5)p = −

√
5. Using

the fact that (a+ b)p = ap + bp (because all other terms have coefficient divisible by p), we get that(
1 +

√
5

2

)p

=
1−

√
5

2
=⇒

(
1 +

√
5

2

)p−1

=

(
1−

√
5

2

)2

=
3−

√
5

2
.



Similarly,
(

1−
√
5

2

)p−1

= 3+
√
5

2 . Hence, by Binet’s formula,

Fp−1 =
1√
5

(1 +
√
5

2

)p−1

−

(
1−

√
5

2

)p−1


=
1√
5

(
3−

√
5

2
− 3 +

√
5

2

)
= −1,

so it is not divisible by p.

Hence, Fp−1 ̸≡ 0 (mod p) if 5 is not a quadratic residue modulo p, which contradicts d | p− 1 above.
This completes the solution.

10. [60] Determine, with proof, all possible values of gcd(a2 + b2 + c2, abc) across all triples of positive
integers (a, b, c).

Proposed by: Henrick Rabinovitz

Answer: All positive integers n such that νp(n) ̸= 1 for all prime p ≡ 3 (mod 4)

Solution: First, we show that no other n work. If there does exist prime p ≡ 3 (mod 4) such that
νp(n) = 1, then p | abc; without loss of generality, assume p divides a. Then, p2 | a2 and p | a2+b2+c2,
so p | b2 + c2. Since p is 3 modulo 4, −1 is not a quadratic residue modulo p, so b2 ≡ −c2 (mod p)
only has the trivial solution (b, c) = 0. Therefore p | b and p | c, so p2 | n. This contradicts νp(n) = 1,
so no solutions outside of the claimed solution set exist.

Now, we give the construction. Let n be in the claimed solution set. We proceed in two steps.

Step 1 (Local step). For each prime p dividing n, we will construct a, b, and c modulo pνp(n)+1 such
that νp(gcd(a

2 + b2 + c2, abc)) = νp(n).

We have a couple cases.

• If νp(n) = 2k for some positive integer k, pick a = pk, b = pk, and c = pk+1 for p ̸= 2 and pick
a = b = c = pk for p = 2.

• If p ̸≡ 3 (mod 4) and νp(n) = 2k + 1 for some nonnegative integer k, then by Fermat’s
Christmas theorem, there are positive integers x and y for which x2+ y2 = p. Then pick a = xpk,
b = ypk, and c = pk+1.

• If p ≡ 3 (mod 4) and νp(n) = 2k + 1 for some nonnegative integer k, then k ≥ 1 by
assumption. We let x and y be positive integers for which νp(x

2 + y2 + 1) = 1. (This is fairly

standard. To briefly recall the proof, note that x and y satisfying x2 + 1 ≡ −y2 (mod p) exist because some

quadratic residue must be adjacent to a nonquadratic residue, and forcing x2 +1 ̸≡ −y2 (mod p2) can be done by

adding appropriate multiples of p to x or y.) Then, pick a = xpk, b = ypk, and c = pk.

Step 2 (Global step). Given solutions (ap, bp, cp) modulo pνp(n)+1 for each prime p | n, we construct
a working solution (a, b, c) over positive integers.

By Chinese Remainder Theorem, we can pick positive integers a, b, and c such that for all prime p | n,
(a, b, c) ≡ (ap, bp, cp) (mod pνp(n)+1). Now, we need to modify this construction to ensure that no
other primes divide gcd(a2 + b2 + c2, abc).

For every prime p | c with p ∤ n, we modify a and b (by adding additional congruence relations) so that
p does not divide a2 + b2. Then, p does not divide gcd(a2 + b2 + c2, abc) for any prime p such that p | c



and p ∤ n. Let

N =
∏
p|cn

pνp(n)+1,

S = {primes p such that p | ab but p ∤ cn},

P =
∏
p∈S

pφ(N) ≡ 1 (mod N).

In particular, we have only fixed residues of a, b, c modulo N at this point. Now, let a1 = aP and
b1 = bP . This keeps all of our mod N conditions. We now claim that (a1, b1, c) works. To prove this,
fix a prime p, and note that

• if p divides cn, then since a′ ≡ a (mod N) and b′ ≡ b (mod N), we have νp(gcd(a
2
1 + b21 +

c2, a1b1c)) = νp(n) from our construction of (a, b, c).

• if p ∈ S, then we note that p divides a21 + b21, but not c
2, so p does not divide a21 + b21 + c2.

• if p /∈ S and p ∤ cn, then p does not divide a1b1c.

This concludes the proof.


