HMMT HMIC 2025

April 20, 2025

HMIC 2025

- 1. [5] Let ABCD be a convex quadrilateral. Define parabolas \mathcal{P}_A , \mathcal{P}_B , \mathcal{P}_C , and \mathcal{P}_D to have directrices BD, CA, DB, and AC, and foci A, B, C, and D, respectively. Prove that no two of these parabolas intersect more than once.
 - (A parabola with directrix ℓ and focus P consists of all points X for which PX equals the distance from P to ℓ .)
- 2. [7] Find all polynomials P with real coefficients for which there exists a polynomial Q with real coefficients such that for all real t,

$$\cos(P(t)) = Q(\cos t).$$

- 3. [8] Let ABCD be a parallelogram, and let O be a point inside ABCD. Suppose the circumcircles of triangles OAB and OCD intersect at $P \neq O$, and the circumcircles of triangles OBC and OAD intersect at $Q \neq O$. Prove $\angle POQ$ equals one of the angles of quadrilateral ABCD.
- 4. [9] Determine whether there exist infinitely many pairs of distinct positive integers m and n such that $2^m + n$ divides $2^n + m$.
- 5. [13] Compute the smallest positive integer k > 45 for which there exists a sequence $a_1, a_2, a_3, \ldots, a_{k-1}$ of positive integers satisfying the following conditions:
 - $a_i = i$ for all integers $1 \le i \le 45$,
 - $a_{k-i} = i$ for all integers $1 \le i \le 45$, and
 - for any odd integer $1 \le n \le k-45$, the sequence $a_n, a_{n+1}, \ldots, a_{n+44}$ is a permutation of $\{1, 2, \ldots, 45\}$.