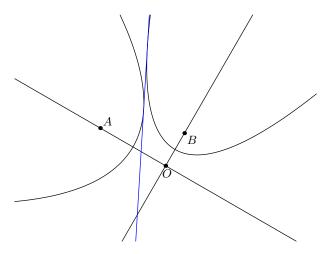
HMIC 2025

April 20-27, 2025

1. [5] Let ABCD be a convex quadrilateral. Define parabolas \mathcal{P}_A , \mathcal{P}_B , \mathcal{P}_C , and \mathcal{P}_D to have directrices BD, CA, DB, and AC, and foci A, B, C, and D, respectively. Prove that no two of these parabolas intersect more than once.

(A parabola with directrix ℓ and focus P consists of all points X for which PX equals the distance from P to ℓ .)

Proposed by: Albert Wang



Solution 1: Let d(P, XY) be the distance from P to line XY. We will first prove \mathcal{P}_A and \mathcal{P}_B intersect at most once.

Claim 1. Let ℓ_{AB} be the perpendicular bisector of AB. Then, \mathcal{P}_A is tangent to ℓ_{AB} .

Proof. Consider any point X on \mathcal{P}_A . Then,

$$XA = d(X, BD) < XB,$$

with equality only holding at the unique point X for which $XB \perp BD$. Thus, \mathcal{P}_A lies entirely on one side of ℓ_{AB} , touching it once at this point X.

It follows that \mathcal{P}_A and \mathcal{P}_B are on different sides of ℓ_{AB} and hence can intersect at most once (possibly at a common tangency point to ℓ_{AB}).

Since ABCD is convex, A and C lie on opposite sides of line BD, the common directrix of \mathcal{P}_A and \mathcal{P}_C . Thus, \mathcal{P}_A and \mathcal{P}_C lie on opposite sides of line BD and cannot intersect at all.

The remaining pairs of parabolas are handled similarly.

Solution 2: Let d(P, XY) be the distance from P to line XY.

Claim 2. \mathcal{P}_A and \mathcal{P}_B intersect at most once.

Proof. Let P be a common point of both parabolas. Then, d(P, BD) = PA and d(P, AC) = PB, which combined imply

$$PA = d(P, BD) < PB = d(P, AC) < PA.$$

Thus, the inequalities above are equalities, i.e., PA = PB, $PA \perp AC$, and $PB \perp BD$. Such P, if it exists, is unique.

The remaining pairs of parabolas are handled similarly. As in solution 1, \mathcal{P}_A and \mathcal{P}_C cannot intersect, nor can \mathcal{P}_B and \mathcal{P}_D .

2. [7] Find all polynomials P with real coefficients for which there exists a polynomial Q with real coefficients such that for all real t,

$$\cos(P(t)) = Q(\cos t).$$

Proposed by: Karthik Venkata Vedula

Answer: All constant functions and $P(x) = ax + b\pi$ for all nonzero integers a and integers b

Solution 1: It is well-known that these polynomials work by taking Q to be a Chebyshev polynomial (if P is linear) or a constant (if P is constant).

Suppose that $\deg P \geq 2$. Now consider the density of the roots of $\cos(P(t))$, i.e.

$$\lim_{n\to\infty}\frac{\text{number of roots in the interval }[-n,n]}{n}.$$

Since $\cos(P(t)) = Q(\cos t)$, the density is finite, because for each interval of length 2π , there can only be a finite number of roots (i.e. twice the degree of Q). However, we claim that $\cos(P(t))$ has an infinite density of roots. In particular, consider the solutions to $P(x) = \pm (2k-1)\pi/2$ over positive integers k. Asymptotically, for large k, such x will always exist and be $\Theta(k^{1/\deg P})$. As $k \to \infty$, such x become infinitely dense, contradicting the finite density of roots of $Q(\cos t)$. Therefore, deg $P \le 1$.

If deg P = 1, let P(t) = at + b. Observe that $Q(\cos t)$ is periodic with period 2π , so $\cos(P(t))$ must be as well. This is only the case when a is an integer. Furthermore,

$$Q(\cos t) = \cos(at + b) = \cos(at)\cos(b) - \sin(at)\sin(b)$$

must be an even function. Note that $\cos(at)\cos(b)$ is even and $\sin(at)\sin(b)$ is odd, so $\sin(at)\sin(b)=0$ for all t, and hence b is an integer multiple of π .

Thus, the only polynomials that work are the ones claimed above.

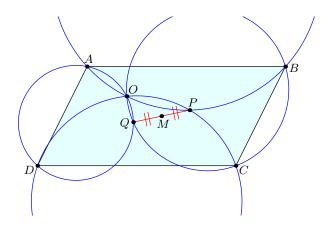
Solution 2: Taking the derivative of both sides,

$$\sin(P(t))P'(t) = (-\sin t)Q'(\cos t).$$

The right-hand side is bounded in t, so the left-hand side must also be bounded. If deg $P \ge 2$, then as t approaches ∞ , P'(t) approaches $\pm \infty$ and $\sin(P(t))$ does not approach 0, contradiction. Thus, deg $P \le 1$, and we finish as before.

3. [8] Let ABCD be a parallelogram, and let O be a point inside ABCD. Suppose the circumcircles of triangles OAB and OCD intersect at $P \neq O$, and the circumcircles of triangles OBC and OAD intersect at $Q \neq O$. Prove $\angle POQ$ equals one of the angles of quadrilateral ABCD.

Proposed by: Derek Liu



Solution: In what follows, all angles are directed.

Claim 1. The points P and Q are symmetric over the center of ABCD.

Proof. Note that

$$\angle APB = \angle AOB = \angle OAD + \angle CBO = \angle OQD + \angle CQO = \angle CQD.$$

Similar equalities hold for each pair of opposite sides, so P and Q are symmetric across the parallelogram's center.

Consequently, AP and CQ are parallel, so

$$\angle POQ = \angle POB + \angle BOQ = \angle PAB + \angle BCQ = \angle CBA$$
,

as desired. (Once we undirect the angles, $\angle POQ$ is either $\angle B$ or $\pi - \angle B = \angle A$.)

4. [9] Determine whether there exist infinitely many pairs of distinct positive integers m and n such that $2^m + n$ divides $2^n + m$.

Proposed by: Carlos Rodriguez, Jordan Lefkowitz

Answer: Yes

Solution: Let k be a positive integer, and set $m = 2^k$ and $n = p - 2^{2^k}$ for prime p to be chosen later. We want $2^m + n = p$ to divide $2^{p-2^{2^k}} + 2^k$, which is equivalent to having

$$0 \equiv 2^{p-2^{2^k}} + 2^k \equiv 2^{1-2^{2^k}} + 2^k \equiv 2^{1-2^{2^k}} \left(2^{2^{2^k}+k-1}+1\right) \pmod{p}.$$

Let $r = 2^{2^k} + k - 1$. Since $r \neq 3$, by Zsigmondy, we can pick a prime p that divides $2^r + 1$ but not $2^s + 1$ for any nonnegative integer s < r. Let $d = \operatorname{ord}_p(2)$. Then, $2^{|d-r|} \equiv -1 \pmod{p}$, so by definition of p, we have $|d-r| \geq r$. Hence, $d \geq 2r$. As $d \mid p-1$, we conclude

$$p > 2r = 2\left(2^{2^k} + k - 1\right) > 2^{2^k} + 2^k,$$

so $n = p - 2^{2^k} > m$. Since $p \mid 2^r + 1$ by definition, (m, n) is a pair of distinct positive integers with $2^m + n \mid 2^n + m$.

As k was arbitrary (and $m = 2^k$), there exist infinitely many such pairs.

- 5. [13] Compute the smallest positive integer k > 45 for which there exists a sequence $a_1, a_2, a_3, \ldots, a_{k-1}$ of positive integers satisfying the following conditions:
 - $a_i = i$ for all integers $1 \le i \le 45$,
 - $a_{k-i} = i$ for all integers $1 \le i \le 45$, and
 - for any odd integer $1 \le n \le k-45$, the sequence $a_n, a_{n+1}, \ldots, a_{n+44}$ is a permutation of $\{1, 2, \ldots, 45\}$.

Proposed by: Derek Liu

Answer: 1059

Solution: First, we show 1059 is optimal. Assume for sake of contradiction that k < 1059.

The given condition ensures that $\{a_1, a_2\} = \{a_{46}, a_{47}\}$, $\{a_3, a_4\} = \{a_{48}, a_{49}\}$, and so on. In particular, if $a_i = j$, the next appearance of j must either be a_{i+44} , a_{i+45} , or a_{i+46} ; working modulo 45, these indices all differ from i by at most 1. Furthermore, $a_i = a_{i+44}$ is only possible if i is even, and $a_i = a_{i+46}$ is only possible if i is odd.

Also, $a_1 \neq a_{45}$ by definition. Thus, if the sequence contains the same number at least 25 times, the 25th appearance has index at least $2 + 24 \cdot 44 = 1058$, implying $k \geq 1059$. Hence, we can assume every number appears at most 24 times in the sequence.

Observe that there exists a unique integer $1 \le j \le 45$ such that

$$(k-j) - j = k - 2j \equiv 22 \pmod{45}$$
.

Let $k_1 = j, k_2, k_3, \ldots, k_\ell = k - j$ be the indices of where j appears in the sequence; as assumed above, $\ell \le 24$. For any i, we proved $k_i - k_{i-1}$ is either 44, 45, or 46, and thus either 0 or ± 1 modulo 45. Since k - j and j differ by $22 \equiv -23$ modulo 45, either $k_i - k_{i-1} = 46$ for at least 22 different i, or $k_i - k_{i-1} = 44$ for at least 23 different i. We split into cases based on which.

If $k_i - k_{i-1} = 46$ at least 22 times, we claim $\ell = 23$. Indeed, if $\ell = 24$, then

$$(k-i) > i + 22 \cdot 46 + 44 = i + 1056.$$

Since $(k-j)-j\equiv 22\pmod{45}$, we actually have $(k-j)\geq j+1057$, so $k\geq 2j+1057\geq 1059$, contradiction.

Thus, $\ell = 23$, so $k_i - k_{i-1} = 46$ for all i, and $k = 2j + 22 \cdot 46 = 2j + 1012$, which means we can assume $j \le 23$ (otherwise k > 1059).

Since $a_j = a_{j+46}$, we must also have $a_{j+1} = a_{j+45}$ be the second appearance of j+1, which means j must be odd. Then, as j+45 is even, $a_{j+45} = j+1$ must either be equal to either a_{j+89} or a_{j+90} . Now, $a_{k-j-1} = j+1$ as well, and

$$(k-j-1)-(j+90) \equiv 21 \pmod{45}$$
,

so if a_{j+90} is the 3rd appearance of j+1, then a_{k-j-1} must be at least the 24th. Thus, it must be exactly the 24th, with each appearance of j+1 being exactly 46 terms after the previous. Thus,

$$k - j - 1 > (j + 90) + 21 \cdot 46 = j + 1056,$$

and $k \ge 2j + 1057 \ge 1059$, as desired. If a_{j+89} is the 3rd appearance of j+1, then since $(k-j-1) - (j+89) \equiv 22 \pmod{45}$, it follows that a_{k-j-1} must be at least the 25th appearance, contradiction.

The other case, where $k_i - k_{i-1} = 44$ at least 23 times (i.e., for all i) plays out similarly. Since $k_2 = k_1 + 44$, we immediately have $j = k_1$ is even. Furthermore, $a_{j-1} = a_{j+45} = j-1$ is the second appearance of j-1, and since j+45 is odd, the third appearance is either a_{j+90} or a_{j+91} . However,

$$(k-j+1) - (j+90) \equiv -22 \pmod{45}$$
,

so regardless of whether a_{j+90} or a_{j+91} is the 3rd appearance of j-1, we know a_{k-j+1} must be at least the 25th, contradiction.

Thus $k \ge 1059$, and it suffices to provide a construction.

Given an integer m, let α represent the permutation on $\{1, 2, ..., m\}$ given by swapping 1 and 2, 3 and 4, etc. and let β represent the permutation given by swapping 2 and 3, 4 and 5, etc.

Claim 1. Both of the products $\underbrace{\cdots \beta \alpha \beta \alpha}_{m}$ and $\underbrace{\cdots \alpha \beta \alpha \beta}_{m}$, with exactly m terms in the products, equal the reverse permutation.

Proof. If we track any number i, observe that if i is odd,

$$\alpha(i) = i + 1$$

$$\beta\alpha(i) = i + 2$$

$$\vdots$$

$$\cdots\beta\alpha(i) = m$$

$$\cdots\beta\alpha(i) = m$$

$$\cdots\beta\alpha(i) = m - 1$$

$$\cdots\beta\alpha(i) = m - 1$$

$$\cdots$$

$$\cdots$$

$$\cdots$$

$$\cdots$$

$$\cdots$$

$$\beta\alpha(i) = m - 1$$

$$\cdots$$

A similar chain occurs if i is even, so $\underline{\cdots \beta \alpha}$ is indeed the reverse permutation. The same argument

shows that the product
$$\underbrace{\cdots \alpha \beta}_{m}$$
 is also the reverse permutation.

Our construction now goes as follows: for any odd n, let $a_{n+46} = a_n$ and $a_{n+45} = a_{n+i}$ unless $n \equiv 0$ or 23 mod 45. Then, we can note that a_{46} through a_{68} are the permutation α on $\{1, 2, \ldots, 23\}$, and a_{91} through a_{113} are $\alpha\beta$, etc. By our claim, $a_{1+23\cdot45} = a_{1036}$ through a_{1058} are 1 through 23 reversed. Similarly, as there are only 22 numbers from 24 through 45, we know $a_{24+22\cdot45} = a_{1014}$ through a_{1035} are 24 through 45 reversed. It follows that this sequence satisfies the above conditions for k = 1059.

The diagram below shows what the construction would look like when 45 is replaced with 9. The sequence can be read row-by-row. The vertical line separates 1 through 5 from 6 through 9.

Remark. The exact same proof and construction work for all odd $n \ge 5$, yielding an answer of $\frac{n^2+2n+3}{2}$. Notably, for n=3 the answer is 6 instead of 9.