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1. [5] Let ABCD be a convex quadrilateral. Define parabolas PA, PB , PC , and PD to have directrices
BD, CA, DB, and AC, and foci A, B, C, and D, respectively. Prove that no two of these parabolas
intersect more than once.

(A parabola with directrix ℓ and focus P consists of all points X for which PX equals the distance
from P to ℓ.)

Proposed by: Albert Wang

A

B

O

Solution 1: Let d(P,XY ) be the distance from P to line XY . We will first prove PA and PB intersect
at most once.

Claim 1. Let ℓAB be the perpendicular bisector of AB. Then, PA is tangent to ℓAB .

Proof. Consider any point X on PA. Then,

XA = d(X,BD) ≤ XB,

with equality only holding at the unique point X for which XB ⊥ BD. Thus, PA lies entirely on one
side of ℓAB , touching it once at this point X.

It follows that PA and PB are on different sides of ℓAB and hence can intersect at most once (possibly
at a common tangency point to ℓAB).

Since ABCD is convex, A and C lie on opposite sides of line BD, the common directrix of PA and
PC . Thus, PA and PC lie on opposite sides of line BD and cannot intersect at all.

The remaining pairs of parabolas are handled similarly.

Solution 2: Let d(P,XY ) be the distance from P to line XY .

Claim 2. PA and PB intersect at most once.

Proof. Let P be a common point of both parabolas. Then, d(P,BD) = PA and d(P,AC) = PB,
which combined imply

PA = d(P,BD) ≤ PB = d(P,AC) ≤ PA.

Thus, the inequalities above are equalities, i.e., PA = PB, PA ⊥ AC, and PB ⊥ BD. Such P , if it
exists, is unique.
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The remaining pairs of parabolas are handled similarly. As in solution 1, PA and PC cannot intersect,
nor can PB and PD.

2. [7] Find all polynomials P with real coefficients for which there exists a polynomial Q with real
coefficients such that for all real t,

cos(P (t)) = Q(cos t).

Proposed by: Karthik Venkata Vedula

Answer: All constant functions and P (x) = ax+ bπ for all nonzero integers a and integers b

Solution 1: It is well-known that these polynomials work by taking Q to be a Chebyshev polynomial
(if P is linear) or a constant (if P is constant).

Suppose that degP ≥ 2. Now consider the density of the roots of cos(P (t)), i.e.

lim
n→∞

number of roots in the interval [−n, n]

n
.

Since cos(P (t)) = Q(cos t), the density is finite, because for each interval of length 2π, there can only
be a finite number of roots (i.e. twice the degree of Q). However, we claim that cos(P (t)) has an
infinite density of roots. In particular, consider the solutions to P (x) = ±(2k − 1)π/2 over positive
integers k. Asymptotically, for large k, such x will always exist and be Θ(k1/ degP ). As k → ∞, such
x become infinitely dense, contradicting the finite density of roots of Q(cos t). Therefore, deg P ≤ 1.

If deg P = 1, let P (t) = at+ b. Observe that Q(cos t) is periodic with period 2π, so cos(P (t)) must be
as well. This is only the case when a is an integer. Furthermore,

Q(cos t) = cos(at+ b) = cos(at) cos(b)− sin(at) sin(b)

must be an even function. Note that cos(at) cos(b) is even and sin(at) sin(b) is odd, so sin(at) sin(b) = 0
for all t, and hence b is an integer multiple of π.

Thus, the only polynomials that work are the ones claimed above.

Solution 2: Taking the derivative of both sides,

sin(P (t))P ′(t) = (− sin t)Q′(cos t).

The right-hand side is bounded in t, so the left-hand side must also be bounded. If degP ≥ 2, then
as t approaches ∞, P ′(t) approaches ±∞ and sin(P (t)) does not approach 0, contradiction. Thus,
degP ≤ 1, and we finish as before.

3. [8] Let ABCD be a parallelogram, and let O be a point inside ABCD. Suppose the circumcircles
of triangles OAB and OCD intersect at P ̸= O, and the circumcircles of triangles OBC and OAD
intersect at Q ̸= O. Prove ∠POQ equals one of the angles of quadrilateral ABCD.

Proposed by: Derek Liu
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Solution: In what follows, all angles are directed.

Claim 1. The points P and Q are symmetric over the center of ABCD.

Proof. Note that

∡APB = ∡AOB = ∡OAD + ∡CBO = ∡OQD + ∡CQO = ∡CQD.

Similar equalities hold for each pair of opposite sides, so P and Q are symmetric across the parallelo-
gram’s center.

Consequently, AP and CQ are parallel, so

∡POQ = ∡POB + ∡BOQ = ∡PAB + ∡BCQ = ∡CBA,

as desired. (Once we undirect the angles, ∠POQ is either ∠B or π − ∠B = ∠A.)

4. [9] Determine whether there exist infinitely many pairs of distinct positive integers m and n such that
2m + n divides 2n +m.

Proposed by: Carlos Rodriguez, Jordan Lefkowitz

Answer: Yes

Solution: Let k be a positive integer, and set m = 2k and n = p− 22
k

for prime p to be chosen later.

We want 2m + n = p to divide 2p−22
k

+ 2k, which is equivalent to having

0 ≡ 2p−22
k

+ 2k ≡ 21−22
k

+ 2k ≡ 21−22
k
(
22

2k+k−1 + 1

)
(mod p).

Let r = 22
k

+ k − 1. Since r ̸= 3, by Zsigmondy, we can pick a prime p that divides 2r + 1 but not
2s+1 for any nonnegative integer s < r. Let d = ordp(2). Then, 2

|d−r| ≡ −1 (mod p), so by definition
of p, we have |d− r| ≥ r. Hence, d ≥ 2r. As d | p− 1, we conclude

p > 2r = 2
(
22

k

+ k − 1
)
> 22

k

+ 2k,

so n = p − 22
k

> m. Since p | 2r + 1 by definition, (m,n) is a pair of distinct positive integers with
2m + n | 2n +m.

As k was arbitrary (and m = 2k), there exist infinitely many such pairs.
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5. [13] Compute the smallest positive integer k > 45 for which there exists a sequence a1, a2, a3, . . . ,
ak−1 of positive integers satisfying the following conditions:

• ai = i for all integers 1 ≤ i ≤ 45,

• ak−i = i for all integers 1 ≤ i ≤ 45, and

• for any odd integer 1 ≤ n ≤ k − 45, the sequence an, an+1, . . . , an+44 is a permutation of
{1, 2, . . . , 45}.

Proposed by: Derek Liu

Answer: 1059

Solution: First, we show 1059 is optimal. Assume for sake of contradiction that k < 1059.

The given condition ensures that {a1, a2} = {a46, a47}, {a3, a4} = {a48, a49}, and so on. In particular,
if ai = j, the next appearance of j must either be ai+44, ai+45, or ai+46; working modulo 45, these
indices all differ from i by at most 1. Furthermore, ai = ai+44 is only possible if i is even, and ai = ai+46

is only possible if i is odd.

Also, a1 ̸= a45 by definition. Thus, if the sequence contains the same number at least 25 times, the
25th appearance has index at least 2+24 · 44 = 1058, implying k ≥ 1059. Hence, we can assume every
number appears at most 24 times in the sequence.

Observe that there exists a unique integer 1 ≤ j ≤ 45 such that

(k − j)− j = k − 2j ≡ 22 (mod 45).

Let k1 = j, k2, k3, . . . , kℓ = k− j be the indices of where j appears in the sequence; as assumed above,
ℓ ≤ 24. For any i, we proved ki − ki−1 is either 44, 45, or 46, and thus either 0 or ±1 modulo 45.
Since k − j and j differ by 22 ≡ −23 modulo 45, either ki − ki−1 = 46 for at least 22 different i, or
ki − ki−1 = 44 for at least 23 different i. We split into cases based on which.

If ki − ki−1 = 46 at least 22 times, we claim ℓ = 23. Indeed, if ℓ = 24, then

(k − j) ≥ j + 22 · 46 + 44 = j + 1056.

Since (k − j) − j ≡ 22 (mod 45), we actually have (k − j) ≥ j + 1057, so k ≥ 2j + 1057 ≥ 1059,
contradiction.

Thus, ℓ = 23, so ki − ki−1 = 46 for all i, and k = 2j +22 · 46 = 2j +1012, which means we can assume
j ≤ 23 (otherwise k > 1059).

Since aj = aj+46, we must also have aj+1 = aj+45 be the second appearance of j + 1, which means j
must be odd. Then, as j + 45 is even, aj+45 = j + 1 must either be equal to either aj+89 or aj+90.
Now, ak−j−1 = j + 1 as well, and

(k − j − 1)− (j + 90) ≡ 21 (mod 45),

so if aj+90 is the 3rd appearance of j + 1, then ak−j−1 must be at least the 24th. Thus, it must be
exactly the 24th, with each appearance of j + 1 being exactly 46 terms after the previous. Thus,

k − j − 1 ≥ (j + 90) + 21 · 46 = j + 1056,

and k ≥ 2j + 1057 ≥ 1059, as desired. If aj+89 is the 3rd appearance of j + 1, then since (k− j − 1)−
(j + 89) ≡ 22 (mod 45), it follows that ak−j−1 must be at least the 25th appearance, contradiction.

The other case, where ki − ki−1 = 44 at least 23 times (i.e., for all i) plays out similarly. Since
k2 = k1 + 44, we immediately have j = k1 is even. Furthermore, aj−1 = aj+45 = j − 1 is the second
appearance of j − 1, and since j + 45 is odd, the third appearance is either aj+90 or aj+91. However,

(k − j + 1)− (j + 90) ≡ −22 (mod 45),
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so regardless of whether aj+90 or aj+91 is the 3rd appearance of j − 1, we know ak−j+1 must be at
least the 25th, contradiction.

Thus k ≥ 1059, and it suffices to provide a construction.

Given an integer m, let α represent the permutation on {1, 2, . . . ,m} given by swapping 1 and 2, 3 and
4, etc. and let β represent the permutation given by swapping 2 and 3, 4 and 5, etc.

Claim 1. Both of the products · · ·βαβα︸ ︷︷ ︸
m

and · · ·αβαβ︸ ︷︷ ︸
m

, with exactly m terms in the products, equal

the reverse permutation.

Proof. If we track any number i, observe that if i is odd,

α(i) = i+ 1

βα(i) = i+ 2

...

· · ·βα︸ ︷︷ ︸
m−i

(i) = m

· · ·βα︸ ︷︷ ︸
m−i+1

(i) = m

· · ·βα︸ ︷︷ ︸
m−i+2

(i) = m− 1

· · ·
· · ·βα︸ ︷︷ ︸

m

(i) = m− i+ 1.

A similar chain occurs if i is even, so · · ·βα︸ ︷︷ ︸
m

is indeed the reverse permutation. The same argument

shows that the product · · ·αβ︸ ︷︷ ︸
m

is also the reverse permutation.

Our construction now goes as follows: for any odd n, let an+46 = an and an+45 = an+i unless
n ≡ 0 or 23 mod 45. Then, we can note that a46 through a68 are the permutation α on {1, 2, . . . , 23},
and a91 through a113 are αβ, etc. By our claim, a1+23·45 = a1036 through a1058 are 1 through 23
reversed. Similarly, as there are only 22 numbers from 24 through 45, we know a24+22·45 = a1014
through a1035 are 24 through 45 reversed. It follows that this sequence satisfies the above conditions
for k = 1059 .

The diagram below shows what the construction would look like when 45 is replaced with 9. The
sequence can be read row-by-row. The vertical line separates 1 through 5 from 6 through 9.

1 2 3 4 5 6 7 8 9
2 1 4 3 5 6 8 7 9
2 4 1 5 3 8 6 9 7
4 2 5 1 3 8 9 6 7
4 5 2 3 1 9 8 7 6
5 4 3 2 1

Remark. The exact same proof and construction work for all odd n ≥ 5, yielding an answer of n2+2n+3
2 .

Notably, for n = 3 the answer is 6 instead of 9.
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