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1. [5] Let ABCD be a convex quadrilateral. Define parabolas P4, Pp, Pc, and Pp to have directrices
BD, CA, DB, and AC, and foci A, B, C, and D, respectively. Prove that no two of these parabolas
intersect more than once.

(A parabola with directrix ¢ and focus P consists of all points X for which PX equals the distance
from P to £.)

Proposed by: Albert Wang

Solution 1: Let d(P, XY') be the distance from P to line XY. We will first prove P4 and Pp intersect
at most once.

Claim 1. Let £4p5 be the perpendicular bisector of AB. Then, P4 is tangent to 5.

Proof. Consider any point X on P4. Then,
XA=d(X,BD) < XB,

with equality only holding at the unique point X for which XB | BD. Thus, P4 lies entirely on one
side of £ 4p, touching it once at this point X. O

It follows that P4 and Pp are on different sides of £45 and hence can intersect at most once (possibly
at a common tangency point to £4pg).

Since ABCD is convex, A and C lie on opposite sides of line BD, the common directrix of P4 and
Pc. Thus, P4 and P lie on opposite sides of line BD and cannot intersect at all.

The remaining pairs of parabolas are handled similarly.

Solution 2: Let d(P, XY') be the distance from P to line XY.
Claim 2. P4 and Ppg intersect at most once.
Proof. Let P be a common point of both parabolas. Then, d(P,BD) = PA and d(P, AC) = PB,

which combined imply
PA=d(P,BD) < PB=d(P,AC) < PA.

Thus, the inequalities above are equalities, i.e., PA = PB, PA 1 AC, and PB | BD. Such P, if it
exists, is unique. O
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The remaining pairs of parabolas are handled similarly. As in solution 1, P4 and P¢ cannot intersect,
nor can Pp and Pp.

2. [7] Find all polynomials P with real coefficients for which there exists a polynomial @ with real
coefficients such that for all real ¢,

cos(P(t)) = Q(cost).
Proposed by: Karthik Venkata Vedula

Answer: ‘ All constant functions and P(z) = ax + brr for all nonzero integers a and integers b

Solution 1: It is well-known that these polynomials work by taking @ to be a Chebyshev polynomial
(if P is linear) or a constant (if P is constant).

Suppose that degP > 2. Now consider the density of the roots of cos(P(t)), i.e.

I number of roots in the interval [—n, n]
oo n '

Since cos(P(t)) = Q(cost), the density is finite, because for each interval of length 27, there can only
be a finite number of roots (i.e. twice the degree of @)). However, we claim that cos(P(¢)) has an
infinite density of roots. In particular, consider the solutions to P(x) = £(2k — 1)m/2 over positive
integers k. Asymptotically, for large k, such x will always exist and be ©(k'/ 48 ”). As k — oo, such
x become infinitely dense, contradicting the finite density of roots of Q(cost). Therefore, deg P < 1.

If deg P =1, let P(t) = at 4+ b. Observe that Q(cost) is periodic with period 27, so cos(P(t)) must be
as well. This is only the case when a is an integer. Furthermore,

Q(cost) = cos(at + b) = cos(at) cos(b) — sin(at) sin(b)
must be an even function. Note that cos(at) cos(b) is even and sin(at) sin(b) is odd, so sin(at) sin(b) =0
for all ¢, and hence b is an integer multiple of .

Thus, the only polynomials that work are the ones claimed above.
Solution 2: Taking the derivative of both sides,
sin(P(t))P'(t) = (—sint)Q’(cost).

The right-hand side is bounded in ¢, so the left-hand side must also be bounded. If deg P > 2, then
as t approaches oo, P’(t) approaches +oco and sin(P(t)) does not approach 0, contradiction. Thus,
deg P < 1, and we finish as before.

3. [8] Let ABCD be a parallelogram, and let O be a point inside ABCD. Suppose the circumcircles
of triangles OAB and OCD intersect at P # O, and the circumcircles of triangles OBC and OAD
intersect at Q # O. Prove ZPOQ equals one of the angles of quadrilateral ABCD.

Proposed by: Derek Liu
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Solution: In what follows, all angles are directed.

Claim 1. The points P and @ are symmetric over the center of ABCD.

Proof. Note that
LAPB = LAOB = LOAD + LCBO = L0QD + £CQO = LCQD.

Similar equalities hold for each pair of opposite sides, so P and ) are symmetric across the parallelo-
gram’s center. O

Consequently, AP and CQ are parallel, so
APOQ = £APOB + £BOQ = LPAB + {BCQ = £CBA,

as desired. (Once we undirect the angles, ZPOQ is either /B or m — /B = ZA.)

4. [9] Determine whether there exist infinitely many pairs of distinct positive integers m and n such that
2™ 4 n divides 2" 4+ m.

Proposed by: Carlos Rodriguez, Jordan Lefkowitz

Answer: Yes

Solution: Let k be a positive integer, and set m = 2¥ and n = p — 22" for prime p to be chosen later.

k
We want 2 + n = p to divide 2r—2" 4 2% which is equivalent to having
k k k k
0=2or2 + 2k = 91-2? +2F = 91-2* (222 Th=1 4 1) (mod p).

Let r = 22" + k — 1. Since r # 3, by Zsigmondy, we can pick a prime p that divides 2" + 1 but not
2% +1 for any nonnegative integer s < r. Let d = ord,(2). Then, 2/%~" = —1 (mod p), so by definition
of p, we have |d — r| > r. Hence, d > 2r. As d | p— 1, we conclude

p>2r:2<22k+k71) > 92 4 ok,
son=p-— 22" > m. Since p | 2" 4+ 1 by definition, (m,n) is a pair of distinct positive integers with

2" +n | 2" + m.

As k was arbitrary (and m = 2F), there exist infinitely many such pairs.

(©2025 HMMT



5. [18] Compute the smallest positive integer k > 45 for which there exists a sequence aq, as, as, ...,
ar—1 of positive integers satisfying the following conditions:
e a; =i for all integers 1 < i < 45,
e a;_,; =1 for all integers 1 < ¢ < 45, and
e for any odd integer 1 < n < k — 45, the sequence a,, apt1, .., Gniaqa 1S a permutation of

{1,2,...,45}.

Proposed by: Derek Liu
Answer: 1059
Solution: First, we show 1059 is optimal. Assume for sake of contradiction that k < 1059.

The given condition ensures that {a1, a2} = {ase,a47}, {as,as} = {ass,as9}, and so on. In particular,
if a; = j, the next appearance of j must either be a;y44, Git45, Or a;44¢; Working modulo 45, these
indices all differ from ¢ by at most 1. Furthermore, a; = a;444 is only possible if 7 is even, and a; = a;44¢
is only possible if 4 is odd.

Also, a; # ays by definition. Thus, if the sequence contains the same number at least 25 times, the
25th appearance has index at least 24 24 - 44 = 1058, implying £ > 1059. Hence, we can assume every
number appears at most 24 times in the sequence.

Observe that there exists a unique integer 1 < j < 45 such that
(k—j)—7j=k—2j=22 (mod 45).

Let k1 = j, ko, k3, ..., k¢ = k— j be the indices of where j appears in the sequence; as assumed above,
¢ < 24. For any i, we proved k; — k;_1 is either 44, 45, or 46, and thus either 0 or £1 modulo 45.
Since k — j and j differ by 22 = —23 modulo 45, either k; — k;_1 = 46 for at least 22 different ¢, or
k; — k;_1 = 44 for at least 23 different 7. We split into cases based on which.

If k; — k;—1 = 46 at least 22 times, we claim ¢ = 23. Indeed, if £ = 24, then
(k—j)>j+22 46 + 44 = j + 1056.
Since (k — j) — j = 22 (mod 45), we actually have (k — j) > j + 1057, so k > 2j 4+ 1057 > 1059,

contradiction.

Thus, ¢ = 23, so k; — k;_1 = 46 for all 4, and k = 25 4+ 2246 = 2j + 1012, which means we can assume
J < 23 (otherwise k > 1059).

Since a; = ajy46, we must also have aj41 = a;145 be the second appearance of j + 1, which means j
must be odd. Then, as j + 45 is even, a;145 = j + 1 must either be equal to either a; g9 or a;yoo.
Now, arp—j—1 = j+ 1 as well, and

(k—j—1)—(j+90) =21 (mod 45),

so if aj499 is the 3rd appearance of j + 1, then aj_;—1 must be at least the 24th. Thus, it must be
exactly the 24th, with each appearance of j + 1 being exactly 46 terms after the previous. Thus,

kE—j—1>(j+90)+21-46 = j + 1056,

and k > 25 + 1057 > 1059, as desired. If ajgg is the 3rd appearance of j + 1, then since (k —j —1) —
(7 +89) =22 (mod 45), it follows that aj_;—1 must be at least the 25th appearance, contradiction.

The other case, where k; — k;—1 = 44 at least 23 times (i.e., for all i) plays out similarly. Since
ko = ki + 44, we immediately have j = k; is even. Furthermore, a;_1 = aj445 = j — 1 is the second
appearance of j — 1, and since j 4 45 is odd, the third appearance is either a; g9 or a;191. However,

(k—j7+1)—(j+90)=—-22 (mod 45),

(©2025 HMMT



so regardless of whether ajig90 or ajyo1 is the 3rd appearance of j — 1, we know aj_j;41 must be at
least the 25th, contradiction.

Thus k& > 1059, and it suffices to provide a construction.

Given an integer m, let « represent the permutation on {1,2,..., m} given by swapping 1 and 2, 3 and
4, etc. and let 8 represent the permutation given by swapping 2 and 3, 4 and 5, etc.

Claim 1. Both of the products - -- fafa and - - - afaf, with exactly m terms in the products, equal
—— ——

m m
the reverse permutation.

Proof. If we track any number ¢, observe that if 7 is odd,

ali)=i+1

Ba(i)=1i+2
< Ba(i) =m

—i
< fa(i) =m
——
m—i+1
e fa(i)y=m—1
~——
m—i+2

A similar chain occurs if i is even, so --- Sa is indeed the reverse permutation. The same argument

——
m
shows that the product - - - af is also the reverse permutation. O
——
m
Our construction now goes as follows: for any odd n, let apy146 = a, and apy45 = ap4; unless
n = 0 or 23 mod 45. Then, we can note that a4 through agg are the permutation « on {1,2,...,23},

and ag; through aji3 are af3, etc. By our claim, aj423.45 = a1036 through ajgsg are 1 through 23
reversed. Similarly, as there are only 22 numbers from 24 through 45, we know asgi920.45 = a1014
through ajg35 are 24 through 45 reversed. It follows that this sequence satisfies the above conditions
for k =[1059].

The diagram below shows what the construction would look like when 45 is replaced with 9. The
sequence can be read row-by-row. The vertical line separates 1 through 5 from 6 through 9.

1 2 3 4 5|6 7 8 9
2 1 4 3 5|6 8 7 9
2 4 1 5 3|8 6 9 7
4 2 5 1 3[8 9 6 7
4 5 2 3 119 8 7 6
5 4 3 2 1

Remark. The exact same proof and construction work for all odd n > 5, yielding an answer of %
Notably, for n = 3 the answer is 6 instead of 9.
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