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General Round

1. Let ABCD be a rectangle. Let X and Y be points on segments BC and AD, respectively, such that
∠AXY = ∠XY C = 90◦. Given that AX : XY : Y C = 1 : 2 : 1 and AB = 1, compute BC.

Proposed by: Derek Liu, Marin Hristov Hristov

Answer: 3

Solution:

A
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D

X
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Let Z be the foot from Y to BC. Then, △ABX ∼ △XZY . Since XY/AX = 2, we know

XZ = 2AB = 2 and BX = ZY/2 = 1/2. Similarly, CZ = 1/2, so BC = 1/2 + 2 + 1/2 = 3 .

2. Suppose n integers are placed in a circle such that each of the following conditions is satisfied:

• at least one of the integers is 0;

• each pair of adjacent integers differs by exactly 1; and

• the sum of the integers is exactly 24.

Compute the smallest value of n for which this is possible.

Proposed by: Derek Liu

Answer: 12

Solution: Note n is always even because the numbers in the circle alternate parity. If n ≤ 8, then the
sum is at most 0 + 1+ 2+ 3+ 4+ 3+ 2+ 1 = 16, so n ≥ 10. If n = 10, the sum consists of 5 even and
5 odd numbers, so it cannot be even. Thus, n ≥ 12 , achieved with the following diagram.
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3. Ashley fills each cell of a 3× 3 grid with some of the numbers 1, 2, 3, and 4 (possibly none or several).
Compute the number of ways she can do so such that each row and each column contains each of 1, 2,
3, and 4 exactly once. (One such grid is shown below.)
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1 2 3 4

4 1 2 3

3 2 1 4

Proposed by: Ashley Zhu

Answer: 1296

Solution: We consider the placements of each of 1, 2, 3, and 4 separately. Observe that there are
3! = 6 ways to place the 1’s, as each row must have a 1 and they must be in different columns. The
same holds for 2, 3, and 4. Thus, the answer is 64 = 1296 .

4. Given that a, b, and c are integers with c ≤ 2025 such that |x2 + ax + b| = c has exactly 3 distinct
integer solutions for x, compute the number of possible values of c.

Proposed by: Srinivas Arun

Answer: 31

Solution: The answer is 31. The possible values of c are c = 2k2 for integers 1 ≤ k ≤ 31. These work
by taking a = 0 and b = −2k2; then |x2 − 2k2| = 2k2 is equivalent to x2 = 0 or 4k2, so it has three
integer solutions: x = 0,−2k, 2k.

We will now prove no other values of c work. The problem condition is equivalent to the two quadratic
equations

x2 + ax+ b = c and x2 + ax+ b = −c

having three distinct integer solutions in total.

If c = 0, then these two quadratics are the same, so they have at most two roots in total, contradiction.
Hence c ̸= 0, so the two quadratics share no roots.

If one of these quadratics has an integer root, then both its roots are integers. This follows from
Vieta’s formulas: for each quadratic, the sum of the roots is −a, an integer. If only one quadratic has
integer roots, then the two quadratics have at most two integer roots in total, contradiction. So both
quadratics have all integer roots.

Because the two quadratics have three distinct integer roots in total, and all roots of both quadratics
are integers, the two quadratics have three distinct roots in total. Since the quadratics share no roots,
one quadratic has two roots and the other has one root. Graphically, this means that the vertex of
x2 + ax+ b lies on either the line y = c or y = −c. Since this parabola faces upward, the case y = c is
impossible (since then x2 + ax+ b never intersects y = −c), so the vertex lies on y = −c. Refer to the
diagram below.

f(x) = x2 + ax+ b

y = c

y = −c

(−a
2 ,−c)
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Because x2 + ax+ b = −c has one root, x2 + ax+ (b+ c) is a perfect square; it must be (x+ a
2 )

2, and
so x2 + ax+ (b+ c) = 0 has the single solution x = −a

2 . This implies a
2 is an integer.

Next we use the condition that x2 + ax+ b = c has integer roots. Complete the square to obtain that

x2 + ax+ b = c =⇒ x2 + ax+ (b+ c) =
(
x+

a

2

)2

= 2c.

Since a
2 and x are both integers, 2c must be a (nonzero) perfect square. Note that 2c is even, so let

2c = (2k)2 for some integer k. This rewrites as c = 2k2. Since 1 ≤ c ≤ 2025, 1 ≤ k2 ≤ 1012, so
1 ≤ k ≤ 31. Hence these are the only values of c that work, as desired.

5. Let A, B, C, and D be points on a line in that order. There exists a point E such that ∠AED = 120◦

and triangle BEC is equilateral. Given that BC = 10 and AD = 39, compute |AB − CD|.
Proposed by: Jackson Dryg

Answer: 21

Solution:

A B C D

E

First, we note that ∠ABE = ∠AED = 120◦, so △ABE ∼ △AED. Similarly, △ECD ∼ △AED, so
△ABE ∼ △ECD. Now, let AB = x and CD = y. Then,

x

10
=

10

y
=⇒ xy = 100.

Furthermore, x+ y = AD −BC = 29, so

(x− y)2 = (x+ y)2 − 4xy = 292 − 4 · 100 = 441.

Hence, the answer is |x− y| =
√
441 = 21 .

6. Kelvin the frog is at the point (0, 0, 0) and wishes to reach the point (3, 3, 3). In a single move, he
can either increase any single coordinate by 1, or he can decrease his z-coordinate by 1. Given that
he cannot visit any point twice, and that at all times his coordinates must all stay between 0 and 3
(inclusive), compute the number of distinct paths Kelvin can take to reach (3, 3, 3).

Proposed by: Derek Liu

Answer: 46
(
6
3

)
= 81920

Solution: Projecting the path down to the xy-plane, we get an up-right path from (0, 0) to (3, 3), of
which there are

(
6
3

)
= 20. Fix such an up-right path. Each edge in this path can be the projection

of four different edges Kelvin can take (at z = 0, 1, 2, and 3), so there are 46 ways to pick the six
edges that project down to the up-right path. These can be connected into a unique path with vertical
moves, so the answer is 46

(
6
3

)
= 81920 .
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7. A positive integer n is imbalanced if strictly more than 99 percent of the positive divisors of n are
strictly less than 1 percent of n. Given that M is an imbalanced multiple of 2000, compute the
minimum possible number of positive divisors of M .

Proposed by: Srinivas Arun

Answer: 1305

Solution: Note that M has at least 13 divisors which are at least M
100 , namely

M
1 ,

M
2 ,

M
4 ,

M
8 ,

M
16 ,

M
5 ,

M
10 ,

M
20 ,

M
40 ,

M
80 ,

M
25 ,

M
50 ,

M
100 .

Therefore, since more than 99 percent of M ’s divisors are less than M
100 , we know M must have at least

13 ·100+1 = 1301 divisors in total. Consider M = 24 ·5260. Note that M has (4+1)(260+1) = 1305

divisors and the only divisors of M that are at least M
100 are the 13 divisors listed above. We now show

that the number of positive divisors of M can’t be between 1301 and 1304 inclusive.

Observe that 32 ∤ M . Indeed, if 32 | M , then M
32 would be a divisor of M , meaning there would be at

least 14 divisors that are at least M
100 . This would mean M has at least 14 · 100 + 1 = 1401 divisors,

which is not minimal due to the construction above achieving 1305 divisors. As 2000 | M and 32 ∤ M ,
we get that ν2(M) = 4. In particular, this means the number of divisors of M is divisible by 4+1 = 5,
so M can’t have between 1301 and 1304 divisors inclusive. This concludes the solution.

8. Let Γ1 and Γ2 be two circles that intersect at two points P and Q. Let ℓ1 and ℓ2 be the common
external tangents of Γ1 and Γ2. Let Γ1 touch ℓ1 and ℓ2 at U1 and U2, respectively, and let Γ2 touch
ℓ1 and ℓ2 at V1 and V2, respectively. Given that PQ = 10 and the distances from P to ℓ1 and ℓ2 are 3
and 12, respectively, compute the area of the quadrilateral U1U2V2V1.

Proposed by: Aprameya Tripathy

Answer: 200

Solution:

A

B

P

Q

X

Y

U1

U2

V1

V2
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Let PQ meet ℓ1 and ℓ2 at X and Y , respectively, and let the feet from P to ℓ1 and ℓ2 be A and B,
repsectively. By symmetry, note that U1U2V2V1 and U2U1XY are isosceles trapezoids. We will find
both the height and the midline length of U1U2V2V1 to compute its area.

Since U2U1XY is an isosceles trapezoid, we have that ∠PXA = ∠PY B. Furthermore, ∠PAX =
90◦ = ∠PBY , so △PXA ∼ △PY B. Then, since QY = PX by symmetry,

PQ

XP
=

PY

XP
− 1 =

PB

PA
− 1 =

12

3
− 1 = 3,

meaning XP = 10
3 and XQ = XP + PQ = 40

3 . Thus, sin∠PXA = PA
XP = 9

10 . Since lines PQ
and U1U2 are parallel, we have that ∠PXA = ∠U2U1V1, so the height of trapezoid U1U2V2V1 is
U1V1 · sin∠PXA = 9

10U1V1. Now, by Power of a Point,

XU2
1 = XP ·XQ = XV 2

1 ,

and
Y U2

2 = Y P · Y Q = Y V 2
2

so X and Y are the midpoints of U1V1 and U2V2, respectively, and U1V1 = 2
√
XP ·XQ = 40

3 .
Therefore, XY is the midline of U1U2V2V1 and has length PQ+ 2 · PX = 10 + 2 · 20

3 = 50
3 , while the

height of U1U2V2V1 is 9
10U1V1 = 12.

Thus, the area of trapezoid U1U2V2V1 is 12 · 50
3 = 200 .

9. Let a, b, and c be pairwise distinct nonzero complex numbers such that

(10a+ b)(10a+ c) = a+ 1
a ,

(10b+ a)(10b+ c) = b+ 1
b ,

(10c+ a)(10c+ b) = c+ 1
c .

Compute abc.

Proposed by: Pitchayut Saengrungkongka, Qiao Zhang

Answer: 1
91

Solution 1: Consider the polynomial f(x) = (x + a)(x + b)(x + c). The given conditions can be
rewritten as

f(10a) = (10a+ a)(a+ 1
a ) = 11(a2 + 1),

f(10b) = (10b+ b)(b+ 1
b ) = 11(b2 + 1),

f(10c) = (10c+ c)(c+ 1
c ) = 11(c2 + 1).

Thus, 10a, 10b, and 10c are roots to f(x)− 11( x2

100 + 1). Since a, b, and c are pairwise distinct, these
three roots are distinct, so

(x+ a)(x+ b)(x+ c) = (x− 10a)(x− 10b)(x− 10c) + 11
(

x2

100 + 1
)
.

Comparing the constant term of both sides gives

abc = −1000abc+ 11 =⇒ abc =
11

1001
=

1

91
.

Remark. By comparing coefficients of the equations above, we get a+ b+ c = 1
100 and ab+ bc+ ca = 0.

Together with abc = 1
91 , this solves (a, b, c) up to permutation and shows that such (a, b, c) exist.
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Solution 2: Subtracting the second equation from the first yields

100(a2 − b2) + 9ac− 9bc = a− b+
1

a
− 1

b
.

As a and b are distinct, we can divide both sides by a− b to find

100(a+ b) + 9c = 1− 1

ab
.

A similar argument shows

100(b+ c) + 9a = 1− 1

bc
.

The difference of these two equations gives us

100(a− c) + 9(c− a) =
1

bc
− 1

ab
=⇒ 91(a− c) =

a− c

abc
.

Since a and c are distinct, we can divide both sides by a− c to get abc = 1
91 .

10. Jacob and Bojac each start in a cell of the same 8× 8 grid (possibly different cells). They listen to the
same sequence of cardinal directions (North, South, East, and West). When a direction is called out,
Jacob always walks one cell in that direction, while Bojac always walks one cell in the direction 90◦

counterclockwise of the called direction. If either person cannot make their move without leaving the
grid, that person stays still instead. Over all possible starting positions and sequences of instructions,
compute the maximum possible number of distinct ordered pairs (Jacob’s position,Bojac’s position)
that they could have reached.

Proposed by: Sebastian Attlan

Answer: 372

Solution:

B

C

J
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Suppose there is a third person, Caboj, who starts at the cell which is a 90◦ clockwise rotation of Bojac’s
position about the grid’s center, and always moves in the called direction (unless doing so would leave
the grid). Notice that Caboj’s path is precisely the 90◦ clockwise rotation of Bojac’s path about the
center. Therefore, to maximize the number of ordered pairs (Jacob’s position,Bojac’s position), it
suffices to maximize the number of ordered pairs (Jacob’s position,Caboj’s position).

Consider the (possibly degenerate) rectangle with opposite vertices at Jacob’s and Caboj’s positions.
When Jacob and Caboj both move, this rectangle gets translated by 1 unit in some direction, and
when only only one of Jacob and Caboj moves, this rectangle shrinks by 1 unit in some dimension.
In particular, both side lengths of this rectangle, and hence the taxicab distance between Jacob and
Caboj, are nonincreasing.

Suppose this taxicab distance is currently d, and the rectangle has dimensions x×y, where x+y = d+2.
There are (9−x)(9−y) distinct translations of this rectangle within the grid, all of which are achievable
without shrinking the rectangle. Therefore, there are at most (9− x)(9− y) ordered pairs of positions
with the rectangle having size x×y. This quantity is maximized when x and y are as close as possible,
i.e., x = y = d/2 + 1 when d is even and {x, y} = {(d+ 1)/2, (d+ 3)/2} when d is odd.

Since the side lengths of the rectangle cannot increase, only one rectangle size can be reached for each
taxicab distance d. Summing over all possible taxicab distances, we get an upper bound of

(1)(1) + (1)(2) + (2)(2) + (2)(3) + (3)(3) + (3)(4) + · · ·+ (7)(8) + (8)(8)

= 2(12 + 22 + · · ·+ 72) + (1 + 2 + · · ·+ 7) + 82

= 2

(
7 · 8 · 15

6

)
+

7 · 8
2

+ 64

= 372 .

We can construct this by first having a 8 × 8 rectangle and achieving 1 · 1 position, then shrinking
to a 7 × 8 rectangle and achieving 1 · 2 positions, then shrinking to a 7 × 7 rectangle and achieving
2 · 2 positions, and so on (alternating which dimension we shrink), until we have a 1× 1 rectangle and
achieve 8 · 8 positions.
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