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General Round

1. Let ABCD be a rectangle. Let X and Y be points on segments BC' and AD, respectively, such that
LAXY = /ZXY(C =90°. Given that AX : XY :YC =1:2:1and AB =1, compute BC.

Proposed by: Derek Liu, Marin Hristov Hristov

Answer:

Solution:

-
B X Z C

Let Z be the foot from Y to BC. Then, AABX ~ AXZY. Since XY/AX = 2, we know
XZ = 2AB = 2 and BX = ZY/2 = 1/2. Similarly, CZ = 1/2, s0o BC = 1/2+2+1/2 = .

2. Suppose n integers are placed in a circle such that each of the following conditions is satisfied:

e at least one of the integers is 0;
e cach pair of adjacent integers differs by exactly 1; and

e the sum of the integers is exactly 24.

Compute the smallest value of n for which this is possible.

Proposed by: Derek Liu

Answer:

Solution: Note n is always even because the numbers in the circle alternate parity. If n < 8, then the
sumisat most 0+1+2+3+4+3+2+1=16,s0n > 10. If n = 10, the sum consists of 5 even and
5 odd numbers, so it cannot be even. Thus, n > , achieved with the following diagram.

3. Ashley fills each cell of a 3 x 3 grid with some of the numbers 1, 2, 3, and 4 (possibly none or several).
Compute the number of ways she can do so such that each row and each column contains each of 1, 2,
3, and 4 exactly once. (One such grid is shown below.)
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Proposed by: Ashley Zhu

Answer:

Solution: We consider the placements of each of 1, 2, 3, and 4 separately. Observe that there are
3! = 6 ways to place the 1’s, as each row must have a 1 and they must be in different columns. The
same holds for 2, 3, and 4. Thus, the answer is 6* ={ 1296 |.

4. Given that a, b, and ¢ are integers with ¢ < 2025 such that |22 + az + b| = ¢ has exactly 3 distinct
integer solutions for x, compute the number of possible values of c.

Proposed by: Srinivas Arun

Answer:

Solution: The answer is 31. The possible values of ¢ are ¢ = 2k? for integers 1 < k < 31. These work
by taking a = 0 and b = —2k?; then |2% — 2k?| = 2k? is equivalent to 22 = 0 or 4k?, so it has three
integer solutions: = = 0, —2k, 2k.

We will now prove no other values of ¢ work. The problem condition is equivalent to the two quadratic
equations
?+ar+b=c and z?+ar+b=—c

having three distinct integer solutions in total.

If ¢ = 0, then these two quadratics are the same, so they have at most two roots in total, contradiction.
Hence ¢ # 0, so the two quadratics share no roots.

If one of these quadratics has an integer root, then both its roots are integers. This follows from
Vieta’s formulas: for each quadratic, the sum of the roots is —a, an integer. If only one quadratic has
integer roots, then the two quadratics have at most two integer roots in total, contradiction. So both
quadratics have all integer roots.

Because the two quadratics have three distinct integer roots in total, and all roots of both quadratics
are integers, the two quadratics have three distinct roots in total. Since the quadratics share no roots,
one quadratic has two roots and the other has one root. Graphically, this means that the vertex of
22 + ax + b lies on either the line y = c or y = —c. Since this parabola faces upward, the case y = ¢ is
impossible (since then 22 + ax + b never intersects y = —c), so the vertex lies on y = —c. Refer to the
diagram below.

f(x)=2*+azx+b
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Because x2 + ax + b = —c has one root, 2% + ax + (b + ¢) is a perfect square; it must be (z + %)27 and

so 2? + ax + (b+ ¢) = 0 has the single solution 2 = —%. This implies & is an integer.

Next we use the condition that 2 + ax 4+ b = ¢ has integer roots. Complete the square to obtain that

2
P 4ar+b=c = x2+ax+(b+c): (erg) = 2c.

Since § and x are both integers, 2c¢ must be a (nonzero) perfect square. Note that 2c is even, so let

2¢c = (2k)2 for some integer k. This rewrites as ¢ = 2k2. Since 1 < ¢ < 2025, 1 < k2 < 1012, so
1 < k < 31. Hence these are the only values of ¢ that work, as desired.

5. Let A, B, C, and D be points on a line in that order. There exists a point E such that ZAED = 120°
and triangle BEC is equilateral. Given that BC = 10 and AD = 39, compute |AB — CD|.

Proposed by: Jackson Dryg

Answer:

Solution:

A B C D

First, we note that ZABE = ZAED = 120°, so AABE ~ AAED. Similarly, AECD ~ NAFED, so
NABE ~ ANECD. Now, let AB =2 and CD = y. Then,

T 10
—_=— = = 100.
10 gy e
Furthermore, z +y = AD — BC = 29, so
(x —y)? = (z +y)? — 4oy = 292 — 4- 100 = 441.

Hence, the answer is |z — y| = /441 = .

6. Kelvin the frog is at the point (0,0,0) and wishes to reach the point (3,3,3). In a single move, he
can either increase any single coordinate by 1, or he can decrease his z-coordinate by 1. Given that
he cannot visit any point twice, and that at all times his coordinates must all stay between 0 and 3
(inclusive), compute the number of distinct paths Kelvin can take to reach (3,3, 3).

Proposed by: Derek Liu

Answer: | 45() = 81920

Solution: Projecting the path down to the xy-plane, we get an up-right path from (0,0) to (3, 3), of
which there are (g) = 20. Fix such an up-right path. Each edge in this path can be the projection
of four different edges Kelvin can take (at z = 0, 1, 2, and 3), so there are 45 ways to pick the six
edges that project down to the up-right path. These can be connected into a unique path with vertical
moves, so the answer is 49 (g) = .
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7. A positive integer n is imbalanced if strictly more than 99 percent of the positive divisors of n are
strictly less than 1 percent of n. Given that M is an imbalanced multiple of 2000, compute the
minimum possible number of positive divisors of M.

Proposed by: Srinivas Arun

Answer:

Solution: Note that M has at least 13 divisors which are at least 24

100, namely

Therefore, since more than 99 percent of M’s divisors are less than %, we know M must have at least

13-100+ 1 = 1301 divisors in total. Consider M = 2*.52°, Note that M has (44 1)(260+ 1) =| 1305
divisors and the only divisors of M that are at least % are the 13 divisors listed above. We now show

that the number of positive divisors of M can’t be between 1301 and 1304 inclusive.
Observe that 32 1 M. Indeed, if 32 | M, then % would be a divisor of M, meaning there would be at
least 14 divisors that are at least . This would mean M has at least 14 - 100 + 1 = 1401 divisors,

100°
which is not minimal due to the construction above achieving 1305 divisors. As 2000 | M and 32t M,

we get that vo(M) = 4. In particular, this means the number of divisors of M is divisible by 4+1 =5,
so M can’t have between 1301 and 1304 divisors inclusive. This concludes the solution.

8. Let I'y and I'; be two circles that intersect at two points P and ). Let ¢; and /5 be the common
external tangents of I'y and I's. Let I'y touch ¢; and ¢» at U; and Us, respectively, and let I's touch
{1 and ¢5 at V7 and V3, respectively. Given that PQ = 10 and the distances from P to ¢; and /5 are 3
and 12, respectively, compute the area of the quadrilateral Uy UsVoV;.

Proposed by: Aprameya Tripathy
Answer: | 200

Solution:
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Let PQ meet ¢, and f5 at X and Y, respectively, and let the feet from P to ¢; and ¢ be A and B,
repsectively. By symmetry, note that UyUsVoV; and UsU, XY are isosceles trapezoids. We will find
both the height and the midline length of U;UsV2V; to compute its area.

Since UsU1 XY is an isosceles trapezoid, we have that /PXA = /ZPY B. Furthermore, /PAX =
90° = LZPBY,so APXA ~ APY B. Then, since QY = PX by symmetry,

PQ PY PB 12
Xp~xp 'Tpa T3 1T

meaning XP = % and XQ = XP + PQ = %. Thus, sin /ZPXA = )IZ—IA; = 19—0. Since lines PQ

and U,U; are parallel, we have that /PXA = ZU,U,Vi, so the height of trapezoid U;UsVLV; is
UiV1-sinZPXA = %Uﬂ/’l. Now, by Power of a Point,

XU?=XP-XQ=XV?,
and
YU =YP-YQ=YVy

so X and Y are the midpoints of U;V; and UV, respectively, and U1V}, = 2¢/XP-XQ = %.
Therefore, XY is the midline of U;U3V5V; and has length PQ +2-PX =10+ 2- 2—30 = %, while the
height of U;U5V5V is %Uﬂ/’l =12.

Thus, the area of trapezoid U;Us VoV is 12 - % = .

9. Let a, b, and ¢ be pairwise distinct nonzero complex numbers such that
(10a + b)(10a +¢) = a + +,
(10b+a)(10b +¢) = b+ 1,
(10c + a)(10c + b) = ¢+ 1.
Compute abe.

Proposed by: Pitchayut Saengrungkongka, Qiao Zhang

1

Answer: of

Solution 1: Consider the polynomial f(z) = (z + a)(x + b)(z + ¢). The given conditions can be
rewritten as

f(10a) = (10a + a)(a + 1) = 11(a®* 4+ 1),
f(10b) = (10b+b)(b+ 1) =11(b* + 1),
f(10c) = (10c+¢)(c+ 1) =11(c* +1).

Thus, 10a, 10b, and 10c¢ are roots to f(x) — 11(% + 1). Since a, b, and ¢ are pairwise distinct, these
three roots are distinct, so

(z + a)(z +b)(z + ¢) = (¢ — 10a)(z — 10b)(z — 10¢) + 11 (fm + 1) .

Comparing the constant term of both sides gives

11 1
=1 11 = —=|—|
abc 000abc + — abc 1001 ol

Remark. By comparing coefficients of the equations above, we get a+b+c = ﬁ and ab+ bc+ ca = 0.

Together with abc = %, this solves (a, b, ¢) up to permutation and shows that such (a, b, ¢) exist.
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Solution 2: Subtracting the second equation from the first yields

1 1
100(a® — b?) + 9ac — 9bc = a — b+ PR
As a and b are distinct, we can divide both sides by a — b to find
100(a+b) +9c =1 — —
a c=1-——.
ab
A similar argument shows
1
100(b 9a=1— —.
(b+c) +9a e
The difference of these two equations gives us
1 1 —
100(a—c)+9(c—a)= — — — = 9l(a—c) = =<

be ab abe

Since a and c are distinct, we can divide both sides by a — ¢ to get abc =| 57 |

10. Jacob and Bojac each start in a cell of the same 8 x 8 grid (possibly different cells). They listen to the
same sequence of cardinal directions (North, South, East, and West). When a direction is called out,
Jacob always walks one cell in that direction, while Bojac always walks one cell in the direction 90°
counterclockwise of the called direction. If either person cannot make their move without leaving the
grid, that person stays still instead. Over all possible starting positions and sequences of instructions,
compute the maximum possible number of distinct ordered pairs (Jacob’s position, Bojac’s position)
that they could have reached.

Proposed by: Sebastian Attlan
Answer: | 372

Solution:

(©2025 HMMT



Suppose there is a third person, Caboj, who starts at the cell which is a 90° clockwise rotation of Bojac’s
position about the grid’s center, and always moves in the called direction (unless doing so would leave
the grid). Notice that Caboj’s path is precisely the 90° clockwise rotation of Bojac’s path about the
center. Therefore, to maximize the number of ordered pairs (Jacob’s position, Bojac’s position), it
suffices to maximize the number of ordered pairs (Jacob’s position, Caboj’s position).

Consider the (possibly degenerate) rectangle with opposite vertices at Jacob’s and Caboj’s positions.
When Jacob and Caboj both move, this rectangle gets translated by 1 unit in some direction, and
when only only one of Jacob and Caboj moves, this rectangle shrinks by 1 unit in some dimension.
In particular, both side lengths of this rectangle, and hence the taxicab distance between Jacob and
Caboj, are nonincreasing.

Suppose this taxicab distance is currently d, and the rectangle has dimensions x X y, where x+y = d+2.
There are (9—x)(9—1y) distinct translations of this rectangle within the grid, all of which are achievable
without shrinking the rectangle. Therefore, there are at most (9 — 2)(9 — y) ordered pairs of positions
with the rectangle having size x x y. This quantity is maximized when x and y are as close as possible,
ie, z=y=d/2+ 1 when d is even and {z,y} = {(d+1)/2,(d + 3)/2} when d is odd.

Since the side lengths of the rectangle cannot increase, only one rectangle size can be reached for each
taxicab distance d. Summing over all possible taxicab distances, we get an upper bound of

MM+ M(2) +(2)(2) + (2)3) + (3)(3) + (3)(4) +--- + (7)(8) + (8)(8)

=21 +2°+ -+ 7))+ (1+2+ - +7)+8

7-8-15\ 7-8
=2 (=) + " 464
( : )+ S

:.

We can construct this by first having a 8 x 8 rectangle and achieving 1 - 1 position, then shrinking
to a 7 x 8 rectangle and achieving 1 - 2 positions, then shrinking to a 7 x 7 rectangle and achieving
2 - 2 positions, and so on (alternating which dimension we shrink), until we have a 1 x 1 rectangle and
achieve 8 - 8 positions.
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