НММТ	November 2025, November 08, 202	25 — GUTS ROUND
Organization	Team	Team ID#
1. [5] Compute the remain	der when 1000! is divided by 1001.	
sum of all distinct possi	ble values of the resulting expression.	2, 0, 2, and 5, in some order. Compute the
(Here, $a^{b^{c^d}}$ is evaluated	as $a^{(b^{(c^d)})}$. For instance, $2^{2^{2^2}} = 2^{2^4} = 2^{2^4}$	$2^{16} = 65536.)$
		d Z lie on sides \overline{AB} , \overline{BC} , \overline{CD} , and \overline{DA} . Compute the area of quadrilateral $WXYZ$.
©2025 HMMT		
нммл	November 2025, November 08, 202	DE CUTS POUND
Organization	Team	Team ID#

- 4. [6] A mercury thermometer reads the temperature using three temperature scales: ${}^{\circ}C$ (Celsius), ${}^{\circ}F$ (Fahrenheit), and ${}^{\circ}S$ (Saengrungkongka). The conversions are as follows:
 - A temperature of $x^{\circ}C$ corresponds to $(\frac{9}{5}x + 32)^{\circ}F$.
 - A temperature of $x^{\circ}S$ corresponds to $(\frac{9}{5}x + 32)^{\circ}C$.

Given that the current temperature readings on all three scales are odd positive integers, compute the minimum possible value of the current temperature in degrees **Celsius**.

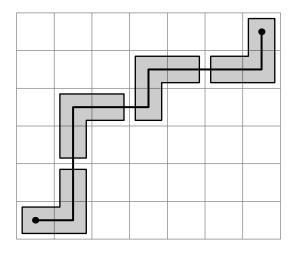
- 5. [6] A circle of radius strictly less than 2 is drawn in the plane. Compute the maximum possible number of lattice points that can lie on its circumference. (A lattice point is a point with integer coordinates.)
- 6. [6] Compute the number of ways to color each cell of an 8×8 grid either red, green, or blue such that every 1×3 and 3×1 rectangle with edges on the grid lines contains exactly one cell of each color.

 \bigcirc 2025 HMMT

HMM	T November 2025, November 08, 20	25 — GUTS ROUND
Organization	Team	Team ID#
	gonal \overline{AC} of rectangle $ABCD$ such the $BX < DX$, compute BX .	at $AX = 11$, $CX = 1$, and triangle BXD
8. [7] Compute the sum of	of the distinct prime factors of 20202525	5.
	re two sets of distinct positive integers, mmon. Further suppose	each with 15 elements, such that S and T
	sum(S) = sum(T) = 1	k,
where $sum(A)$ denotes	the sum of the elements of A . Comput	e the minimum possible value of k .
©2025 HMMT		
	T November 2025, November 08, 20	
Organization	Team	Team ID#
0. [8] Compute the numb	er of positive divisors of 10^{20} that leave	e a remainder of 1 when divided by 9.
1. [8] Jessica has a non-se	quare rectangular sheet of paper with a	ll 4 corners colored differently. She repeats

- 10
- 1 the following process 8 times: she picks one of the rectangle's two axes of symmetry, then flips the rectangle over that axis. Compute the number of ways she can do this so that each corner ends up in its original position.
- 12. [8] Let ABCD be a right trapezoid such that $\angle ABC = \angle BCD = 90^{\circ}$ and the circle with diameter \overline{AD} is tangent to side \overline{BC} . Given that AB = 7 and BC = 8, compute CD.

HMMT November 2025, November 08, 2025 — GUTS ROUND


Organization ______ Team _____ Team ID# _____

- 13. [9] Let P be a point and ℓ be a line in the coordinate plane.
 - If point P were reflected across ℓ and then translated by (+0,+6), the result would be point A.
 - If point P were translated by (+0,+6) and then reflected across ℓ , the result would be point B.

Given that AB = 10, compute the maximum possible area of triangle PAB.

14. [9] Marin starts on the bottom-left square of a 6×7 grid and walks to the top-right square by taking steps one square either up or to the right. Given that the set of squares Marin visits on his walk can be partitioned into L-trominoes, compute the number of ways that Marin can complete his walk.

An *L-tromino* is a set of three squares formed by removing exactly one square from a 2×2 grid of squares. One example of a valid path is shown below:

15. **[9]** Compute

$$\sum_{k=1}^{\infty} \frac{1}{2^{2^k} - 2^{-2^k}} = \frac{1}{2^{2^1} - 2^{-2^1}} + \frac{1}{2^{2^2} - 2^{-2^2}} + \frac{1}{2^{2^3} - 2^{-2^3}} + \cdots$$

 \bigcirc 2025 HMMT

HMMT November 2025, November 08, 2025 — GUTS ROUND		
Organization	Team	Team ID#
16. [10] Let a_1 , a_2 , a_3 , $a_1^4 + a_2^4 + a_3^4 + a_4^4 + a_4^4$	a_4 , and a_5 be the five distinct complex so a_5^4 .	olutions of $x^5 - 20x + 25 = 0$. Compute
-	at inside equilateral triangle ABC such that triangle ACP are 3 and 5, respectively, co	
	mber of ways to divide a 6×6 square into ations and reflections of a division are con	
©2025 HMMT		
НМ	MT November 2025, November 08, 202	5 — GUTS ROUND
Organization	Team	Team ID#

- 19. [11] Compute the number of ordered triples of positive integers (a, b, c) such that b is a divisor of 2025 and $\frac{a}{b} + \frac{b}{c} = \frac{a}{c}$.
- 20. [11] Suppose that ABCD and AXYZ are squares with side lengths 10 and 7, respectively. Given that X lies inside triangle ABY and Y lies on segment \overline{BD} , compute the area of triangle BXC.
- 21. [11] Sarunyu starts at a vertex of a regular 7-gon. At each step, he chooses an unvisited vertex uniformly at random and walks to it along a straight line. He continues until all vertices are visited, and then walks back to his starting vertex along a straight line. A self-intersection occurs when two of his steps cross strictly inside the 7-gon. Compute the expected number of self-intersections in Sarunyu's walk.

HMMT	November 2025, November 08, 20	025 — GUTS ROUND
Organization	Team	Team ID#
22. [12] Suppose that a, b, a	nd c are pairwise distinct nonzero co	omplex numbers such that
	$a^3 - 4a^2 + 5bc = b^3 - 4b^2 + 5ac = c^3$	$^3 - 4c^2 + 5ab = 67.$
Compute abc .		
and 6 blue marbles. Jaco player draws a marble, i draws the next marble (u	po begins by drawing a marble from f it is red, the same player draws the miformly at random). All marbles are	narbles. The bag starts with 6 red marbles the bag, uniformly at random. When either next marble; otherwise, the other player of drawn without replacement. This process he expected number of marbles that Jacopo
	convex pentagon such that $ABCD$ in $BC = 20\sqrt{3}$, compute the area of the	s a rectangle and $\angle AEB = \angle CED = 30^{\circ}$ riangle ADE .
©2025 HMMT		
нммт	November 2025, November 08, 20	
Organization	Team	Team ID#
and so on, ending with a Jacob subtracts its par fi	on the ninth hole. Each hole is a community on that hole. Given that equence of 9 consecutive integers, co	a 1 on the first hole, a 2 on the second hole assigned a par of 3, 4, or 5. For each hole at these 9 (possibly negative) differences car compute the number of ways the pars could

- have been assigned to the holes.

 26. [13] Rectangles ABXP and CDXQ lie inside semicircle \mathcal{S} such that A, B, C, and D lie on the arc of \mathcal{S} , and P and Q lie on the diameter of \mathcal{S} . Given that BX = 7, PX = 6, and QX = 8, compute DX.
- 27. [13] Let a_1, a_2, a_3, \ldots be a sequence of integers such that $a_1 = 2$ and $a_{n+1} = a_n^7 a_n + 1$ for all $n \ge 1$. Compute the remainder when a_{500} is divided by 7^3 .

Organization	Team	Team ID#
	red, green, or blue such that for all ele	we). Compute the number of ways to color ements x and y of S with $ x-y -1$ divisible
29. [15] Compute the small in base 10).	est positive integer multiple of 10001	with all of its digits distinct (when written
	e triangle ABC such that $BP = PC$ If $AC = 25$, compute BC .	and $\angle APC - \angle APB = 60^{\circ}$. Given that
©2025 HMMT		
HMM ⁷	Γ November 2025, November 08, 20	
Organization	Team	Team ID#

- 31. [17] Gumdrops come in 7 different colors. Mark has two boxes of gumdrops, each containing one gumdrop of each color. He repeats the following process 7 times: he removes one gumdrop uniformly at random from each box, then eats one of the two removed gumdrops uniformly at random and throws away the other. Compute the probability Mark eats one gumdrop of each color.
- 32. [17] Compute the smallest positive integer n for which n^n (written in base 10) ends in 123.
- 33. [17] Four points A, B, C, and D lie on a circle with radius 2 such that CD = 3, CA = CB, and DA DB = 1. Compute the maximum possible value of AB.

 \bigcirc 2025 HMMT

.....

HMMT November 2025, November 08, 2025 — GUTS ROUND

Organization	Team	Team ID#

- 34. [20] Estimate the number of integers in $\{1, 2, 3, ..., 10^8\}$ that can be written in the form $x^2 2025y^2$ for some integers x and y.
 - Submit a positive integer E. If the correct answer is A, you will receive $\left[20.99 \max \left(0, 1 \frac{|E-A|}{A}\right)^{2.5}\right]$ points.
- 35. [20] Derek has a 45×45 grid of cells. Initially, every cell in the grid is uncolored. Every second, he picks one of the remaining uncolored cells uniformly at random and colors it in. He stops once there exist two distinct colored cells that share an edge. Estimate the expected number of seconds before Derek stops. Submit a real number E. If the correct answer is E, you will receive $[\max(0, 20 7|E A|^{3/4})]$ points.
- 36. [20] For each of the following properties, compute the smallest positive perfect square n with that property. (Unless otherwise specified, assume all numbers are written in base 10.)
 - 1. n contains at least 4 of the same nonzero digit.
 - 2. n starts with the same 2-digit number repeated twice (i.e., <u>abab</u> for digits a and b).
 - 3. n > 2025 contains 2025 as a contiguous substring.
 - 4. n contains 2520 as a contiguous substring.
 - 5. The sum of the digits of n is 25.
 - 6. When n is written in base 2025, the sum of its digits is 2025. (Submit n in base 10.)
 - 7. n > 10000, and the last four digits of n are also a perfect square (possibly with leading 0s).
 - 8. n^2 has 2025 positive divisors.
 - 9. n has two positive divisors that sum to 2025.

Submit an 9-tuple of integers corresponding to the answers above, or an X for any value you wish to leave blank. For instance, if you think the first and last answers are 2025, you should submit "2025, X, 2025". If you submit C values and they are **all** correct, then you will receive $\lfloor C^2/4 \rfloor$ points. Otherwise, you will receive 0 points.