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1. [5] Compute the remainder when 1000! is divided by 1001.

Proposed by: Derek Liu

Answer: 0

Solution: Since 1001 can be factored into 7 · 11 · 13, we know 1000! is a multiple of 1001, so the
remainder is 0 .

2. [5] Sebastian fills the four squares in □□□□

with the numbers 2, 0, 2, and 5, in some order. Compute
the sum of all distinct possible values of the resulting expression.

(Here, ab
cd

is evaluated as a(b
(cd)). For instance, 22

22

= 22
4

= 216 = 65536.)

Proposed by: Sebastian Attlan

Answer: 69

Solution: We do casework on the location of the 0. Rewrite the expression as ab
cd

.

• If a = 0, the expression is simply 0.

• If b = 0, then the expression must be a0 = 1.

• If c = 0, then

ab
cd

= ab
0

= a1 = a.

There are 2 distinct values for a, being 2 or 5.

• If d = 0, then

ab
cd

= ab
1

= ab,

which can take on the values 22 = 4, 25 = 32, and 52 = 25.

Our answer is thus (0) + (1) + (2 + 5) + (4 + 25 + 32) = 69 .

3. [5] Square ABCD has side length 45. Points W , X, Y , and Z lie on sides AB, BC, CD, and DA,
respectively, such that AW = CY = 20 and BX = DZ = 25. Compute the area of quadrilateral
WXY Z.

Proposed by: Derek Liu

Answer: 1000

Solution:
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A B

CD

W

X

Y

Z

Note that AW = AZ = 20 and BW = BX = 25. Therefore, triangles AWZ and BXW are isosceles
right triangles, whence WZ = 20

√
2 and WX = 25

√
2. Both WX and WZ make 45-degree angles

with AB, so we get that WZ is perpendicular to WX. Similarly, WX is perpendicular to XY and
WZ is perpendicular to ZY . Hence, WXY Z is a rectangle. Thus, the area of WXY Z is

WZ ·WX = (20
√
2) · (25

√
2) = 1000 .

4. [6] A mercury thermometer reads the temperature using three temperature scales: ◦C (Celsius), ◦F
(Fahrenheit), and ◦S (Saengrungkongka). The conversions are as follows:

• A temperature of x◦C corresponds to ( 95x+ 32)◦F .

• A temperature of x◦S corresponds to ( 95x+ 32)◦C.

Given that the current temperature readings on all three scales are odd positive integers, compute the
minimum possible value of the current temperature in degrees Celsius.

Proposed by: Jackson Dryg

Answer: 95

Solution: Let the current temperature readings be f , c, and s in degrees Fahrenheit, Celsius, and
Saengrungkongka, respectively. Write f and s in terms of c:

f =
9

5
c+ 32 and s =

5

9
(c− 32).

We are given that f , c, and s are odd positive integers. For f to be an integer, c must be a multiple
of 5. For s to be an integer, c− 32 must be a multiple of 9. Since c must also be odd, we get that

c ≡ 0 (mod 5)

c ≡ 32 ≡ 5 (mod 9)

c ≡ 1 (mod 2)

Note that c = 5 is a solution to this system of congruences. The least common multiple of the moduli
2, 5, and 9 is 90, so by the Chinese Remainder Theorem, all solutions are given by c ≡ 5 (mod 90).
As c is positive, the smallest values we need to check are 5 and 95.
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Observe that c = 5 fails since that leads to s = −15 < 0. On the other hand, c = 95 works, since the
corresponding values are s = 35 and f = 203, which are odd positive integers. Hence, the minimum
possible value of the current temperature in degrees Celsius is 95 .

5. [6] A circle of radius strictly less than 2 is drawn in the plane. Compute the maximum possible number
of lattice points that can lie on its circumference. (A lattice point is a point with integer coordinates.)

Proposed by: Jordan Lefkowitz

Answer: 8

Solution:

Observe that every lattice point must lie on a horizontal grid line (i.e., a line y = k where k is an
integer). Then note the following:

• The circle must intersect at most 4 horizontal grid lines. This is because for any set of 5 horizontal
grid lines, the distance between the topmost and bottommost lines is at least 4. But the maximum
distance between any two points on the circle is its diameter, which is less than 4, so it cannot
intersect all 5 lines.

• Each horizontal grid line can lead to at most 2 lattice point intersections, since any circle intersects
a line at most twice.

Thus, the number of lattice point intersections is at most 4 · 2 = 8 . For a construction, consider the

circle
(
x− 1

2

)2
+
(
y − 1

2

)2
= 5

2 , which intersects 8 lattice points as shown below.

6. [6] Compute the number of ways to color each cell of an 8× 8 grid either red, green, or blue such that
every 1× 3 and 3× 1 rectangle with edges on the grid lines contains exactly one cell of each color.

Proposed by: Jackson Dryg

Answer: 12

Solution: Notice that two squares 3 units apart must be the same color. For example, the cell marked
? must be red.

?

If we color only the top-left 3× 3 square, by using this fact repeatedly, there’s exactly one way to color
the rest of the grid:
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→

So we only need to count the ways to color the top-left 3 × 3 square. There are 3 × 2 × 1 = 6 ways
to choose the colors on the top row. Consider one of these options, say red-green-blue. Each row and
column must contain exactly one red cell, so there are exactly two ways to place the other two red
cells. Both of these lead to exactly one way to color the entire 3× 3 square:

Similarly, for each of the 6 ways to color the top row, there are 2 ways to color the rest of the 3 × 3
square. Therefore, the answer is 6× 2 = 12 .

7. [7] Point X lies on diagonal AC of rectangle ABCD such that AX = 11, CX = 1, and triangle BXD
has area 18. Given that BX < DX, compute BX.

Proposed by: Jason Mao

Answer:
√
13

Solution: Let AC and BD meet at M , and let T be the foot of the altitude from X onto BD.

M

B

CD

A

X

T

Diagonals AC and BD both have length AX + CX = 12. Since △BXD has area 18, we have:

1

2
(BD)(TX) = 18 =⇒ TX =

18 · 2
12

= 3.

Furthermore, MX = MC − CX = 6− 1 = 5. Then the Pythagorean Theorem on △MTX yields:

MT =
√
MX2 − TX2 =

√
52 − 32 = 4.

Finally, BT = MB −MT = 6− 4 = 2, so the Pythagorean Theorem on △BTX yields:

BX =
√
TB2 + TX2 =

√
22 + 32 =

√
13 .

8. [7] Compute the sum of the distinct prime factors of 20202525.

Proposed by: Sebastian Attlan
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Answer: 243

Solution: Observe that

20202525 = 5 · 4040505
= 52 · 808101
= 52 · 101 · 8001.

Furthermore,

8001 = 203 + 13 = (20 + 1)(202 − 20 · 1 + 12) = 21 · 381 = 32 · 7 · 127.

Since 127 is prime, the answer is 3 + 5 + 7 + 101 + 127 = 243 .

9. [7] Suppose S and T are two sets of distinct positive integers, each with 15 elements, such that S and
T have no elements in common. Further suppose

sum(S) = sum(T ) = k,

where sum(A) denotes the sum of the elements of A. Compute the minimum possible value of k.

Proposed by: Rishabh Das

Answer: 233

Solution: The answer is 233 . This is achieved by the construction

S = {1, 2, 3, 4, 5, 6, 8, 22, 23, 24, 25, 26, 27, 28, 29}

and
T = {7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 31}.

To show that k = 233 is optimal, note that

2k = sum(S) + sum(T ) ≥
30∑
i=1

i = 465.

This implies k ≥ 233, as desired.

10. [8] Compute the number of positive divisors of 1020 that leave a remainder of 1 when divided by 9.

Proposed by: Rohan Bodke

Answer: 75

Solution: Note that all divisors of 1020 can be written as 2a5b, where a and b are nonnegative integers
with 0 ≤ a ≤ 20, 0 ≤ b ≤ 20. For this divisor to leave a remainder of 1 when divided by 9, we need

2a5b ≡ 1 (mod 9)

=⇒ 2a ≡ (5−1)b (mod 9)

=⇒ 2a ≡ 2b (mod 9)

=⇒ 2a−b ≡ 1 (mod 9)

=⇒ a ≡ b (mod 6).
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For a ≡ b ≡ 0, 1, 2 (mod 6), there are four possible values of a and four possible values of b. For
a ≡ b ≡ 3, 4, 5 (mod 6), there are three possible values of a and three possible values of b. Thus, the

answer is 3(4 · 4 + 3 · 3) = 75 .

11. [8] Jessica has a non-square rectangular sheet of paper with all 4 corners colored differently. She
repeats the following process 8 times: she picks one of the rectangle’s two axes of symmetry, then flips
the rectangle over that axis. Compute the number of ways she can do this so that each corner ends up
in its original position.

Proposed by: Kira Lewis

Answer: 128

Solution 1: Let the corners be A, B, C and D in that order around the rectangle. Each time the
sheet is flipped, the side of the sheet facing upward changes. As there are an even number of flips, the
side of the sheet facing upward is the same as the original side. Hence, if A ends up in its original
corner, then all the other corners will also end up in their original places.

During each flip, A will move to one of the corners adjacent to it previous position. In 7 flips, A will
end up in the original position of either B or D. After this, there is always a unique way to flip the
rectangle so that A ends up in its original position. Thus, there are 2 choices for each of the first seven
flips, and the last flip is uniquely determined. This leads to a total of 27 ways to flip the rectangle so
that it ends up in the original position, and so the answer is 128 .

Solution 2: Label two corners of the rectangle on the left “L” and the other two corners on the right
“R”. Label the horizontal axis as x, vertical axis as y. When the flipping is over y axis, L-corners
change the side from left to right or from right to left. When the flipping is over x axis, the L-corners
do not change left-right side.

Therefore, for each corner to end up in its original position, the axis y should be chosen even times, so
the axis x must be chosen even times too.

On the other hand, suppose that each of axis x and y is chosen for even times. Applying the same trick
to each axis x, y separately, we can conclude that each corner ends up in the same side with respect
to both axes. (that is, if a corner starts above x axis, it ends up above x axis. If it starts on the left
to y axis, it ends up to the left of y axis). Consequently, each corner ends up at the start position.

As a result, the given condition in the problem is true if and only if axes x, y are each selected for even
numbers of time. The number of all such combinations is(

8

8

)
+

(
8

6

)
+

(
8

4

)
+

(
8

2

)
+

(
8

0

)
= 128 .

12. [8] Let ABCD be a right trapezoid such that ∠ABC = ∠BCD = 90◦ and the circle with diameter
AD is tangent to side BC. Given that AB = 7 and BC = 8, compute CD.

Proposed by: Pitchayut Saengrungkongka

Answer: 16
7

Solution:
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A B

CD

PO

Note that the center O of the circle with diameter AD is the midpoint of AD. Let P denote the tangency
point of BC. Because OP is perpendicular to BC, we must have that P is the midpoint of BC, implying
BP = PC = 4. Next, notice that because ∠ABP = ∠PCD = 90◦ and ∠BPA + ∠DPC = 90◦, we
have △ABP ∼ △PCD, so

AB

BP
=

PC

CD
=⇒ CD =

BP · PC

AB
=

16

7
.

13. [9] Let P be a point and ℓ be a line in the coordinate plane.

• If point P were reflected across ℓ and then translated by (+0,+6), the result would be point A.

• If point P were translated by (+0,+6) and then reflected across ℓ, the result would be point B.

Given that AB = 10, compute the maximum possible area of triangle PAB.

Proposed by: Jason Mao

Answer: 5
√
11

Solution: Let P1 be the translation of P by (+0,+6), and let P2 be the reflection of P about ℓ.

ℓ P

P1
P2

A

B

Lemma 1. We have [PAB] = [P2AB].
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Proof. First note that PP1AP2 is an isosceles trapezoid, as segment AP2 is the reflection of segment
P1P over ℓ. Also, PP1BP2 is a parallelogram, as P1 and B are 6 units above P and P2, respectively.
Thus, both P1A and P1B are parallel to PP2, so PP2 ∥ AB.

Thus, the heights from P and P2 onto side AB have the same length, so △PAB and △P2AB have
heights and bases of the same length, meaning their areas must be the same too.

We now compute the area of △P2AB as follows:

• Since P2 and A are reflections of P and P1 about ℓ, respectively, we have P2A = PP1 = 6.

• Also, we are given P2B = 6 and AB = 10.

Thus, △P2AB is isosceles with base length 10 and height
√
62 − 52 =

√
11, so

[PAB] = [P2AB] =
1

2
· 10 ·

√
11 = 5

√
11 .

14. [9] Marin starts on the bottom-left square of a 6× 7 grid and walks to the top-right square by taking
steps one square either up or to the right. Given that the set of squares Marin visits on his walk can
be partitioned into L-trominoes, compute the number of ways that Marin can complete his walk.

An L-tromino is a set of three squares formed by removing exactly one square from a 2 × 2 grid of
squares. One example of a valid path is shown below:

Proposed by: Andrew Brahms

Answer: 48

Solution: Note first that each of the L-trominoes must be oriented in one of the following two pictured
configurations:

This is because each of the other two types of L-tromino would induce either a leftward or downward
movement, as shown below, which is forbidden by the problem statement.
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Additionally note that because the grid has 7 columns and 6 rows, Marin will move right 6 times and
up 5 times to get to the top-right corner, passing through a total of 12 squares. This additionally
implies that we will use a total of 4 L-trominoes when tiling his path.

Each L-tromino will correspond to Marin moving one unit to the right and one unit up, and we have
either an up or a right move connecting every pair of consecutive L-trominoes along Marin’s path.
Because Marin moves to the right a total of 6 times and up a total of 5, and because one of each move
type occurs within each of the 4 L-trominoes, we therefore have a total of 6 − 4 = 2 right moves and
5− 4 = 1 up move between pairs of consecutive L-trominoes.

Since each of our 4 L-trominoes can be positioned in one of 2 ways, and there are 3 ways to arrange
the up and right moves between consecutive L-trominoes, we thus have a total of 24 · 3 = 48 possible
paths.

15. [9] Compute
∞∑
k=1

1

22k − 2−2k
=

1

221 − 2−21
+

1

222 − 2−22
+

1

223 − 2−23
+ · · · .

Proposed by: Jacopo Rizzo

Answer: 1
3

Solution: Note that for all real numbers a,

1

a− a−1
=

1

a− 1
− 1

a2 − 1
.

Plugging in a = 22
n

, we obtain

1

22n − 2−2n
=

1

22n − 1
− 1

22n+1 − 1
.

Thus, the n-th partial sum is

n∑
k=1

1

22k − 2−2k
=

(
1

221 − 1
− 1

222 − 1

)
+

(
1

222 − 1
− 1

223 − 1

)
+ · · ·+

(
1

22n − 1
− 1

22n+1 − 1

)
=

1

221 − 1
− 1

22n+1 − 1
.

As n → ∞, we have 1/(22
n+1 − 1) → 0, which implies that

∞∑
k=1

1

22k − 2−2k
=

1

221 − 1
=

1

3
.

16. [10] Let a1, a2, a3, a4, and a5 be the five distinct complex solutions of x5 − 20x + 25 = 0. Compute
a41 + a42 + a43 + a44 + a45.

Proposed by: Pitchayut Saengrungkongka

Answer: 80
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Solution: Note that since a5i −20ai+25 = 0, we have a4i = 20− 25
ai

as 0 is not a root of x5−20x+25 = 0.
Therefore,

a41 + a42 + a43 + a44 + a45 =

(
20− 25

a1

)
+

(
20− 25

a2

)
+

(
20− 25

a3

)
+

(
20− 25

a4

)
+

(
20− 25

a5

)
= 100− 25

(
1

a1
+

1

a2
+

1

a3
+

1

a4
+

1

a5

)
= 100− 25 · a2a3a4a5 + a1a3a4a5 + a1a2a4a5 + a1a2a3a5 + a1a2a3a4

a1a2a3a4a5

By Vieta’s formulas,

a2a3a4a5 + a1a3a4a5 + a1a2a4a5 + a1a2a3a5 + a1a2a3a4 = −20

a1a2a3a4a5 = −25

Substituting these values in, we get

a41 + a42 + a43 + a44 + a45 = 100− 25

(
−20

−25

)
= 80 .

17. [10] Let P be a point inside equilateral triangle ABC such that ∠BPC = 150◦. Given that circumradii
of triangle ABP and triangle ACP are 3 and 5, respectively, compute AP .

Proposed by: Pitchayut Saengrungkongka

Answer: 30√
34

= 15
√
34

17

Solution:

A

B C
P

X

Y

Let X and Y be the centers of ⊙(ABP ) and ⊙(ACP ). Write

∠XAY = ∠XAP + ∠PAY

= (90◦ − ∠ABP ) + (90◦ − ∠ACP )

= (∠PBC + 30◦) + (∠PCB + 30◦)

= 60◦ + (180◦ − ∠BPC) = 90◦.
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Thus, XY =
√
32 + 52 =

√
34. Note that AP is twice the height from A onto XY by symmetry, so

AP =
4[AXY ]

XY
=

15
√
34

17
.

18. [10] Compute the number of ways to divide a 6 × 6 square into 36 triangles, each of which has side
lengths

√
2,

√
2, and 2. (Rotations and reflections of a division are considered distinct divisions.)

Proposed by: Derek Liu

Answer: 4096

Solution:

The square’s edges must be lined with 12 triangles’ hypotenuses because sides of
√
2 cannot add to an

integer length. After placing those 12 triangles, rotate the diagram 45◦ and observe that the remaining
area can be divided into 12 squares, each of side length

√
2. Each triangle must cover half of one of

these squares by the lemma below (scaled up by a factor of
√
2). Each square can be covered in 2 ways,

so there are 212 ways to cover the entire figure.

Lemma 1. Consider any finite polyomino in a unit-length grid. If the polygon is divided into triangles
of side lengths 1, 1, and

√
2, then each triangle covers half of one cell of the grid.

Proof. Align the grid so that the gridlines are horizontal and vertical. We use the term “edge” to refer
to any edge of any triangle. Clearly, every edge is either horizontal, vertical, or diagonal (45◦ angle to
horizontal).

We first prove the following: for any vertical line ℓ which is not a grid line, if some diagonal edge e1
has left endpoint on ℓ, then there also exists a diagonal edge with right endpoint on ℓ.

Without loss of generality, assume e1 is in the up-right direction, and let P be the left endpoint of e1.
Consider the triangle T that has P on its perimeter and borders (some part of) edge e1 from above.
We consider three cases for T .

• T has a 45◦ angle at P . Thus, it has a vertical edge at P . Let Q be any point on the interior
of this edge. Since ℓ is not a gridline, some triangle on the left of ℓ has Q on its perimeter; this
triangle has at least one diagonal edge with right endpoint on ℓ.

• T has a 90◦ angle at P . Then, T has an up-left edge from P , which is a diagonal edge with right
endpoint on ℓ.

• T has a 180◦ angle at P (i.e., P is not a vertex of T ). Since P is a vertex of some triangle, there
must exist a triangle with P as a vertex and a down-left edge from P (bordering T from below);
this edge is a diagonal edge with right endpoint on ℓ.
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In every case, the desired diagonal edge exists.

Some examples of each case are shown below (each column corresponds to one case). In each, ℓ is
dashed, e1 is drawn in blue, T is shaded green, and the desired edge is drawn in red.

P

Q

P

Q

P

P

P

Now assume for sake of contradiction that there exists a diagonal edge e0 of length 1. Let ℓ0 be the
vertical line containing the left endpoint of e0. If ℓ0 is not a gridline, then there exists a diagonal edge
e1 with right endpoint on ℓ0. Let ℓ1 be the vertical line containing the left endpoint of e1; if it is not a
gridline, there exists a diagonal edge e2 with right endpoint on ℓ1. We continue this process; it cannot
go on forever because the polyomino is finite, so eventually we reach some edge en with left endpoint
on a vertical gridline.

We similarly extend rightwards, giving us a sequence of edges en, en−1, . . . , e0, . . . , e−m such that the
right endpoint of ei and the left endpoint of ei−1 lie on the same vertical line, and the left endpoint of
en and the right endpoint of e−m both lie on vertical gridlines. Let d be the distance between these
two gridlines; the total length of the edges in the sequence must be d

√
2. Every edge has length 1 or√

2, so the total length can also be written in the form a+ b
√
2; since e0 has length 1, we know a > 0.

Then a = (d− b)
√
2, contradicting the irrationality of

√
2.

Thus, every edge of length 1 is horizontal or vertical, so every edge of length
√
2 is diagonal. Hence,

for any diagonal edge, the vertical lines through its two endpoints are separated by a distance of 1.
If any diagonal edge had endpoints not on vertical gridlines, then constructing the same sequence of
edges as before would not terminate, as for all i, ℓi would be exactly one unit left of ℓi−1. Thus, every
diagonal edge has both endpoints on vertical gridlines.

A similar argument shows both endpoints are on horizontal gridlines as well. Thus, for any triangle in
the division, its edge of length

√
2 is the diagonal of some cell of the grid. Thus, the triangle is half of

this cell.

19. [11] Compute the number of ordered triples of positive integers (a, b, c) such that b is a divisor of 2025
and a

b + b
c = a

c .
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Proposed by: Derek Liu, Pitchayut Saengrungkongka

Answer: 105

Solution: Multiplying both sides by bc, we get ac+ b2 = ab, so b2 = a(b− c). Note that it is necessary
for d = b− c to be a divisor of b2 strictly less than b. Conversely, for any b and d < b dividing b2, there
exists exactly one such solution (a, b, c), namely, (b2/d, b, b − d). It remains to sum up the number of
divisors of b2 less than b for all divisors b of 2025.

The divisors of b2 other than b can be paired up with each pair multiplying to b2. Each pair contains
one divisor greater than b and one divisor less than b, so if b2 has s divisors, exactly (s− 1)/2 of them
are strictly less than b. Any divisor b | 2025 is of the form 3x5y for nonnegative integers x ≤ 4 and
y ≤ 2, in which case b2 has (2x+ 1)(2y + 1) divisors. Thus, the answer is

4∑
x=0

2∑
y=0

(2x+ 1)(2y + 1)− 1

2
=

(∑4
x=0

∑2
y=0(2x+ 1)(2y + 1)

)
− 15

2

=
(1 + 3 + 5 + 7 + 9)(1 + 3 + 5)− 15

2

= 105 .

Remark. If 2025 is replaced by n, the answer is τ(n)2−τ(n)
2 , where τ(n) is the number of divisors of n.

This follows from the identity ∑
d|n

τ(d2) = τ(n)2,

which can be easily shown by noting that both sides are multiplicative, so it suffices to check this at
prime powers, which is easy.

20. [11] Suppose that ABCD and AXY Z are squares with side lengths 10 and 7, respectively. Given that
X lies inside triangle ABY and Y lies on segment BD, compute the area of triangle BXC.

Proposed by: Pitchayut Saengrungkongka

Answer: 25

Solution:

A

B C

D

X

Y

Z
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Since ∠ABY = 45◦ and ∠AXY = 90◦, we get that X is the circumcenter of triangle ABY . Therefore,
XA = XB, so X lies on the midsegment between AD and BC. Hence, the answer is 1

2 · 10 · 5 = 25 .

21. [11] Sarunyu starts at a vertex of a regular 7-gon. At each step, he chooses an unvisited vertex
uniformly at random and walks to it along a straight line. He continues until all vertices are visited,
and then walks back to his starting vertex along a straight line. A self-intersection occurs when two of
his steps cross strictly inside the 7-gon. Compute the expected number of self-intersections in Sarunyu’s
walk.

Proposed by: Sebastian Attlan

Answer: 14
3

Solution: Any intersection of two diagonals can be defined by the 4 points that they correspond
to. Label the vertices of the 7-gon as A1 through A7 in cyclic order. For each group of 4 points
Ai, Aj , Ak, Al, with 1 ≤ i < j < k < l ≤ 7, we compute the probability they are traversed with a
self-intersection.

A self-intersection occurs when Sarunyu’s walk visits these four vertices out of cyclic order. In other
words, his path goes through Ai and Ak consecutively (in either order) and through Aj and Al consec-
utively (in either order). Fix these 4 vertices and assume (without loss of generality) that Sarunyu’s
starting point is not among them. There are 6! = 720 possible paths for the remaining 6 vertices in
the walk. To count the paths that contain this intersection, we treat AiAk and AjAl as blocks for 4!
ways to arrange the vertices and 22 ways to orient the blocks. This gives us 4! · 22 = 96 paths. Thus,
the probability any set of 4 vertices gives an intersection is 96

720 = 2
15 . Applying linearity of expectation

and summing over all choices of (i, j, k, l), the total expectation is

2

15
·
(
7

4

)
=

14

3
.

22. [12] Suppose that a, b, and c are pairwise distinct nonzero complex numbers such that

a3 − 4a2 + 5bc = b3 − 4b2 + 5ac = c3 − 4c2 + 5ab = 67.

Compute abc.

Proposed by: Pitchayut Saengrungkongka

Answer: 42

Solution 1: For convenience, let p = abc. Then we have

x4 − 4x3 − 67x+ 5p = 0 for x ∈ {a, b, c}.

Thus, this quartic equation has a, b, c as roots, but the product of roots is 5p, so 5 must be the last
root. This implies that

54 − 4 · 53 − 67 · 5 + 5p = 0 =⇒ p = 67 + 4 · 52 − 53 = 42 .

Solution 2: Taking the difference of the first two equations,

0 = (a3 − 4a2 + 5bc)− (b3 − 4b2 + 5ac) = (a3 − b3)− 4(a2 − b2) + 5c(b− a)

= (a− b)(a2 + ab+ b2)− 4(a− b)(a+ b)− 5c(a− b)

= (a− b)[(a2 + ab+ b2)− 4(a+ b)− 5c]

= (a2 + ab+ b2)− 4(a+ b)− 5c,

©2025 HMMT



and similar for b, c and a, c, since a, b, c are not equal. Then, take the difference of these equations:

0 = [(a2 + ab+ b2)− 4(a+ b)− 5c]− [(a2 + ac+ c2)− 4(a+ c)− 5b]

= (b2 − c2) + a(b− c)− 4(b− c)− 5(c− b)

= (b− c)[(b+ c) + a+ 1]

= b+ c+ a+ 1,

so a+ b+ c = −1. Taking the cyclic sum of the first difference equation, we get

0 = [(a2 + ab+ b2)− 4(a+ b)− 5c] + [(b2 + bc+ c2)− 4(b+ c)− 5a] + [(a2 + ac+ c2)− 4(a+ c)− 5b]

= 2(a2 + b2 + c2) + (ab+ bc+ ca)− 13(a+ b+ c)

= 2[(a+ b+ c)2 − 2(ab+ bc+ ca)] + (ab+ bc+ ca)− 13(a+ b+ c)

= 2[1− 2(ab+ bc+ ca)] + (ab+ bc+ ca) + 13

= −3(ab+ bc+ ca) + 15,

so ab+ bc+ ca = 5. Finally, sum the original expressions:

67 · 3 = (a3 − 4a2 + 5bc) + (b3 − 4b2 + 5ac) + (c3 − 4c2 + 5ab)

201 = a3 + b3 + c3 − 4(a2 + b2 + c2) + 5(ab+ bc+ ac)

= [(a+ b+ c)3 − 3(a2b+ a2c+ b2a+ b2c+ c2b+ c2a)− 6abc]

− 4((a+ b+ c)2 − 2(ab+ bc+ ca)) + 5 · 5
= [−1− 3[(a+ b+ c)(ab+ bc+ ca)− 3abc]− 6abc]− 4(1− 2 · 5) + 25

= [−1− 3[−5− 3abc]− 6abc] + 36 + 25

= −1 + 15 + 3abc+ 61

= 3abc+ 75.

Therefore, abc = 42 from the equation 201 = 3abc+ 75 above.

23. [12] Jacopo and Srinivas are playing a game with a bag of marbles. The bag starts with 6 red marbles
and 6 blue marbles. Jacopo begins by drawing a marble from the bag, uniformly at random. When
either player draws a marble, if it is red, the same player draws the next marble; otherwise, the other
player draws the next marble (uniformly at random). All marbles are drawn without replacement. This
process continues until all 12 marbles have been drawn. Compute the expected number of marbles
that Jacopo draws.

Proposed by: Derek Liu

Answer: 45
7

Solution: The players must take turns drawing the blue marbles, so Jacopo will always draw 3 blue
marbles. Any given red marble will be drawn after either 0, 1, . . . , or 6 blue marbles, all with equal
probability; if this quantity is even, Jacopo draws it, and otherwise Srinivas draws it. Hence, there is
a 4

7 probability Jacopo draws any given red marble, so by linearity of expectation, as there are 6 red
marbles, Jacopo draws an expected

6 · 4
7
=

24

7

red marbles. By linearity of expectation, the total expected number of marbles Jacopo draws is equal
to the sum of the expected numbers of blue and red marbles he draws, for an answer of

3 +
24

7
=

45

7
.
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24. [12] Let ABCDE be a convex pentagon such that ABCD is a rectangle and ∠AEB = ∠CED = 30◦.
Given that AB = 14 and BC = 20

√
3, compute the area of triangle ADE.

Proposed by: Pitchayut Saengrungkongka

Answer: 60
√
3

Solution 1:

A

B C

D

E

FM

E′

Let M be the midpoint of AD. Let ⊙(ABE) intersect AD and EM again at F and E′, respectively.

Notice EM is the perpendicular bisector of AD, as ∠AEB = ∠CED. Then, ∠AFB = ∠AEB = 30◦,
so AF = AB ·

√
3 = 14

√
3. Since M is the midpoint of AD, we have AM = 10

√
3 and MF = 4

√
3.

By Power of a Point, E′M ·ME = AM ·MF = 4
√
3·10

√
3 = 120. Furthermore, E′E ∥ AB and ABE′E

is cyclic, so it is an isosceles trapezoid. Hence, E′M = AB+EM = 14+EM and EM ·(EM+14) = 120,

so EM = 6. The area of △ADE is then 1/2 · 6 · 20
√
3 = 60

√
3 .

Solution 2:

A

B C

D

E

M
O1

O2

Let O1 be the circumcenter of △EAB, O2 be the circumcenter of △EDC, and M be the center of
ABCD. We have that ∠AO1B = 2∠AEB = 60◦ and O1A = O1B, so △AO1B is equilateral.
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Since ME is the perpendicular bisector of AD and O1M is the perpendicular bisector of AB, △O1ME
is a right triangle with O1E = O1B = AB = 14 and

O1M = dist(M,AB)− dist(O1, AB) =
20
√
3

2
− 14

√
3

2
= 3

√
3.

Thus, EM =

√
142 −

(
3
√
3
)2

= 13, so the distance from E to AD is 13 − 14
2 = 6, and the area of

△ADE is 1
2 · 6 · 20

√
3 = 60

√
3 .

25. [13] Jacob finished a rather hectic 9 holes of golf: he scored a 1 on the first hole, a 2 on the second
hole, and so on, ending with a 9 on the ninth hole. Each hole is assigned a par of 3, 4, or 5. For
each hole, Jacob subtracts its par from his score on that hole. Given that these 9 (possibly negative)
differences can be arranged to form a sequence of 9 consecutive integers, compute the number of ways
the pars could have been assigned to the holes.

Proposed by: Sebastian Attlan

Answer: 57

Solution: We do casework on the smallest difference, which is at least 1 − 5 = −4 and at most
1− 3 = −2.

• If the smallest difference is −4, then the differences must be −4,−3,−2, . . . , 4, forcing all the pars
to be 5.

• If the smallest difference is −2, then the differences must be −2,−1, 0, . . . , 6, forcing all the pars
to be 3.

• If the smallest difference is −3, then the differences must be −3,−2,−1, . . . , 5. Let f(n) de-
note the number of ways to choose the pars for holes 1, 2, . . . , n such that the differences are
−3,−2,−1, . . . , n− 4. We have f(1) = 1 (we must set the par to 4) and f(2) = 2 (we can set the
pars to 3, 5 or 4, 4). We wish to compute f(9).

We derive a recursion for f(n). Assume n ≥ 3.

– The par of the nth hole cannot be 3 because that would result in a difference of n− 3.

– If the par of the nth hole is 4, then we need to choose the pars for holes 1, 2, . . . , n− 1 such
that the differences are −3,−2,−1, . . . , n− 5. There are f(n− 1) ways to do so.

– If the par of the nth hole is 5, then consider the (n− 1)th hole. If it has a par of 4, then both
the (n − 1)th and nth differences would be n − 4, which is impossible. If it has a par of 5,
then one of the first n− 2 differences must be n− 4, which is also impossible. Therefore, the
(n− 1)th hole must have a par of 3, meaning the (n− 1)th and nth differences are n− 4 and
n− 5. We now need to choose the pars for the holes 1, 2, . . . , n− 2 such that the differences
are −3,−2, . . . , n− 6. There are f(n− 2) ways to do so.

Therefore, f(n) satisfies the Fibonacci recursion. We can compute

f(3) = 3, f(4) = 5, f(5) = 8, f(6) = 13, f(7) = 21, f(8) = 34, f(9) = 55.

Hence, there are 55 possibilities in this case.

Finally, the answer is 1 + 1 + 55 = 57 .

26. [13] Rectangles ABXP and CDXQ lie inside semicircle S such that A, B, C, and D lie on the arc of
S, and P and Q lie on the diameter of S. Given that BX = 7, PX = 6, and QX = 8, compute DX.

Proposed by: Marin Hristov Hristov, Sarunyu Thongjarast

Answer:
√
114− 3

Solution:
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A

B

C

D

P Q

X

B′

D′

O

Let O be the circumcenter of S, which is the intersection of the perpendicular bisectors of AB and
CD. The perpendicular bisector of AB is also the perpendicular bisector of PX, and the perpendicular
bisector of CD is also the perpendicular bisector of QX. Therefore O is the intersection of the
perpendicular bisectors of PX and QX. However, O lies on PQ; therefore ∠PXQ = 90◦. Thus B, X,
and Q are collinear, and similarly, D, X, and P are collinear.

Let Γ be the circle that contains S. Let B′ as the second intersection of BX and Γ, and D′ be the
second intersection of DX and Γ. Since O lies on the perpendicular bisector of QX and BB′, we have
that BX = QB′ = 7, and similarly DX = PD′. Let x = DX. Then power of a point on X gives

7(8 + 7) = BX ·XB′ = DX ·XD′ = x(6 + x).

Solving for x gives x = ±
√
114− 3. The positive solution is DX =

√
114− 3 .

27. [13] Let a1, a2, a3, . . . be a sequence of integers such that a1 = 2 and an+1 = a7n−an+1 for all n ≥ 1.
Compute the remainder when a500 is divided by 73.

Proposed by: Pitchayut Saengrungkongka

Answer: 274

Solution: Let p = 7. Notice that for all n ≥ 1,

an+1 ≡ apn − an + 1 ≡ an − an + 1 ≡ 1 (mod p).

Therefore, there exists a sequence of integers x2, x3, . . . such that we can write an+1 = 1 + pxn+1 for
all n ≥ 1. Plugging this into the recurrence, we have

1 + pxn+1 = an+1

= a7n − an + 1

= (1 + pxn)
p − (1 + pxn) + 1

=

(
· · ·+

(
p

2

)
(pxn)

2 +

(
p

1

)
(pxn) +

(
p

0

))
− pxn

≡ p2xn − pxn + 1 (mod p3)

≡ 1 + p((p− 1)xn) (mod p3).

By repeatedly applying this fact, we get

1 + pxn ≡ 1 + p((p− 1)n−2x2) (mod p3)
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for all n ≥ 2.

We have a2 = 127 = 1 + 7 · 18, so x2 = 18. Now, using the above identity,

a500 = 1 + px500

≡ 1 + p((p− 1)498x2)

≡ 1 + p · 18 · (p− 1)498

≡ 1 + p · 18 · (1− 498p+ · · · )
≡ 1 + p · 18 · (1− 498p)

≡ 1 + 7 · 18− 72 · 18 · 498
≡ 1 + 7 · 18− 72 · 4 · 1

≡ 127− 196 ≡ −69 ≡ 274 (mod p3).

28. [15] Let S be the set of integers between 0 and 100 (inclusive). Compute the number of ways to color
each element of S either red, green, or blue such that for all elements x and y of S with |x − y| − 1
divisible by 3, the colors of x and y are different.

Proposed by: Derek Liu

Answer: 606

R
B

G

R

B

G

R
B

G

R

B

G

R

G

Example of blocking when there are only 14 integers.

Solution 1: We work modulo 101, arranging the numbers in a circle. Since 101 ≡ 2 mod 3, if the
clockwise distance between two numbers is 1 mod 3, so is the counterclockwise distance between them.

Some color must appear at least ⌈101/3⌉ = 34 times, dividing the circle into at least 34 intervals,
which we will call blocks for clarity. No block can have length 1 mod 3 by definition. Furthermore, at
most one block can have length 2 mod 3; otherwise, any interval spanning exactly two blocks of length
2 mod 3 (so the rest are length 0 mod 3) would have total length 1 mod 3, which is disallowed. It is
also clear that not every block can have length 0 mod 3, as they have total length 101, so there must
be exactly 1 block of length 2 mod 3.

Since there are at least 34 blocks, their total length is at least 2+33 ·3 = 101. Thus, equality holds, and
this color appears exactly 34 times. It follows that of the remaining 101 − 34 = 67 numbers, another
color appears 34 times. Without loss of generality, we assume red and green appear 34 times each,
with the red numbers being every multiple of 3. (Any possible arrangement of 34 red numbers can be
reached from this one by rotation.)
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By the argument above, there exists x for which both x − 1 and x + 1 are both green. If x is not
red, then one of x ± 1 is red, so x must be red. If x is neither 0 nor 99, then both x − 2 and x + 2
are blue, but they differ by 4 (or 97), which is disallowed. Thus x = 0 or x = 99. Both lead to valid
colorings (with the green numbers being 1, 4, 7, . . . , 100 and 2, 5, . . . , 95, 98, 100, respectively); one
is a rotation of the other with red and green swapped.

Thus, there is one coloring up to rotation and permutation of colors, or 3! · 101 = 606 colorings total.

Solution 2: Without loss of generality, assume 0 is red and 1 is green; we will multiply by 6 at the
end. Then, 2 is either red or blue.

• If 2 is red, then 3 is either green or blue.

– If 3 is green, then 4 must be blue and 5 must be red. Then, 6 cannot be blue, because that
would make 0, 3, and 6 all different colors, leaving no choices for 7. Thus, 6 must be green.
Then, 7 must be blue and 8 must be red. Again, 9 cannot be blue, because that would make 0,
3, and 9 all different colors, leaving no choices for 10. By repeating this argument, we get that
the entire coloring is fixed with the following repeating pattern: RG(RGB)(RGB)(RGB) . . . .

– If 3 is blue, then 4 must be green. Then, 5 cannot be blue, because that would force 6 to be
green, making 0, 3, and 6 all different colors, leaving no choices for 7. Thus, 5 must be red.
Then, 6 cannot be green, because that would make 0, 3, and 6 all different colors, leaving no
choices for 7. Thus, 6 must be blue. By repeating these arguments, we get that the entire
coloring is fixed with the following repeating pattern: RG(RBG)(RBG)(RBG) . . . .

Therefore, there are 2 colorings in this case.

• If 2 is blue, then consider splitting the coloring into an initial pair followed by several triples:

(RG)(B )( ) . . . ( ).

One valid coloring is setting all triples to be BRG. Otherwise, consider the first triple that
deviates from BRG.

– If it starts with a color other than B, then it must start with R because the previous pair/triple
ends with G. From here, it is easy to check every remaining triple is RGB.

– If it starts with B and its second color is not R, then its second color must be G. From here,
it is easy to check that the triple must be BGB, and all remaining triples must be RGB.

– If it starts with BR and its third color is not G, then its third color must be B. From here,
it is easy to check that the triple must be BRB, and all remaining triples must be RGB.

Therefore, the number of colorings equals the number of positions where the coloring could first
deviate from RG(RBG)(RBG) . . . , plus 1 for the case where no deviation occurs. Hence, there
are 98 + 1 = 99 colorings for this case.

Our final answer is 6 · (99 + 2) = 606 .

29. [15] Compute the smallest positive integer multiple of 10001 with all of its digits distinct (when written
in base 10).

Proposed by: Derek Liu

Answer: 2650134987

Solution: Any multiple of 10001 with 8 or fewer digits can be written as the same 4-digit number
repeated twice (possibly with leading 0s), so it is guaranteed to have repeated digits. Therefore, we
consider multiples with > 8 digits.

Any multiple of 10001 with 9 or 10 digits can be written in the form abc, where b and c are 4-digit
numbers (with leading zeros allowed) and a is a 1 or 2-digit number such that 10001 | a− b+ c. Hence,
a+ c = b or a+ c = b+ 10001.
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We cannot have a + c = b + 10001, otherwise c > 9900 and has repeated 9’s. Thus, a + c = b.
Suppose b starts with the digit d; then, c cannot start with d, but c ≥ b − 99, so c must start with
the digit e = d − 1. Furthermore, b ≥ d012 and c ≤ e987 because b and c have distinct digits, so
a ≥ d012 − e987 = 25. If a starts with a 2, then b ≥ d013 to not repeat 2, but then a would have
to be at least d013 − e987 = 26. Thus, a ≥ 26. There is exactly one solution with a = 26, namely
26 + 4987 = 5013, so the desired multiple is 2650134987 .

30. [15] Point P lies inside triangle ABC such that BP = PC and ∠APC − ∠APB = 60◦. Given that
AP = 12, AB = 20, and AC = 25, compute BC.

Proposed by: Jason Mao

Answer: 75
4 = 18.75

Solution: Let A′ be the reflection of A about the perpendicular bisector of BC.

A A′

B C

P

Lemma 1. Quadrilateral ABCA′ is an isosceles trapezoid, and △APA′ is equilateral.

Proof. Observe A′C is the reflection of AB about the perpendicular bisector of BC, so ABCA′ must
be an isosceles trapezoid. In particular, P lies on this perpendicular bisector, so

PA = PA′ and ∠APA′ = ∠APC − ∠A′PC = ∠APC − ∠APB = 60◦.

Thus △APA′ is equilateral.

Since △APA′ is equilateral, we have AA′ = 12. Then Ptolemy’s Theorem on ABCA′ yields

AA′ ·BC +AB ·A′C = AC ·A′B =⇒ 12 ·BC + 202 = 252.

So BC = 252−202

12 = 75
4 .

31. [17] Gumdrops come in 7 different colors. Mark has two boxes of gumdrops, each containing one
gumdrop of each color. He repeats the following process 7 times: he removes one gumdrop uniformly
at random from each box, then eats one of the two removed gumdrops uniformly at random and throws
away the other. Compute the probability Mark eats one gumdrop of each color.

Proposed by: Jason Mao

Answer: 1
16

Solution 1: We consider the general problem where there are n different colored gumdrops. Without
loss of generality, fix the order of gumdrops that Mark removes from the first box. There are n! ways
to arrange the order that Mark removes gumdrops from the second box with respect to the first, and
2n ways for Mark to decide the gumdrops that he eats, for a total of n! · 2n possible combinations.
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To count the scenarios in which Mark eats all different colored gumdrops, assume Mark eats k gumdrops
from the first box and n − k gumdrops from the second box. There are

(
n
k

)
ways to select which k

colors of gumdrops from the first box are eaten. This uniquely determines the set of positions and
colors of the n − k gumdrops that Mark must eat from the second box. As for ordering the colors in
the second box, there are (n − k)! ways to permute the eaten gumdrops and k! ways to permute the
uneaten gumdrops. This is a total of

(
n
k

)
· (n − k)! · k! = n! ways Mark can eat n different colored

gumdrops for a given k.

Since k can be any integer from 0 to n, the total number of ways is (n + 1) · n! = (n + 1)!, so the
probability that Mark eats n different colored gumdrops is

(n+ 1)!

n! · 2n
=

n+ 1

2n
.

For n = 7, this gives an answer of 1
16 .

Solution 2: We consider the general problem where there are n different colored gumdrops. Label the
gumdrop colors 1, 2, . . . , n, and suppose that gumdrop colored i from the first box is paired gumdrop
colored σ(i) in the second box.

We claim that condition on a fixed value of σ, the probability that Mark eats one gumdrop of each color
is 2c(σ)−n, where c(σ) is the number of cycles in σ. To see this, consider a cycle i, σ(i), σ2(i), . . . , σk−1(i).
Then in order for Mark to eat one gumdrop of each color, Mark has exactly two ways to eat the gumdrop
of these colors:

• Eat all gumdrop of colors i, σ(i), σ2(i), . . . from the first box.

• Eat all gumdrop of colors i, σ(i), σ2(i), . . . from the second box.

Therefore, the number of ways for Mark to eat one gumdrop of each color is 2c(σ). Thus, the claimed
probability is 2c(σ).

Therefore, the answer is
1

2nn!

∑
σ∈Sn

2c(σ),

where Sn is the set of all permutations of {1, 2, . . . , n}. To evaluate the summation, we use the following
well-known lemma, which is a property of Stirling numbers of first kind.

Lemma 1. For any n, we have∑
σ∈Sn

xc(σ) = x(x+ 1)(x+ 2) . . . (x+ n− 1).

Proof. We use induction on n, with the base case n = 1 being clear. For the induction step, assume
that the lemma is true for n− 1. We split an element σ ∈ Sn into two cases:

• If σ fixes n, then n is its own cycle, and we can remove n to get a permutation in Sn−1. Adding a
lone cycle of n back multiply xc(σ) by x, so by induction hypothesis, the contribution of this case
is

x · x(x+ 1)(x+ 2) . . . (x+ n− 2).

• If σ does not fix n (i.e., n is a part of a cycle), then we remove n from the cycle and reglue the
cycle by changing x → n → y to x → y. This gives a permutation in Sn−1. For each permutation
in Sn−1, there are n− 1 ways to insert n back, so the contribution of this case is

(n− 1) · x(x+ 1)(x+ 2) . . . (x+ n− 2).

Thus, the total sum is
(x+ n− 1) · x(x+ 1)(x+ 2) . . . (x+ n− 2),

completing the proof.
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Plugging in x = 2 in the above lemma gives the answer

1

2nn!
· (2 · 3 · 4 · · · (n+ 1)) =

n+ 1

2n
,

and for n = 7, this evaluates to 1
16 .

32. [17] Compute the smallest positive integer n for which nn (written in base 10) ends in 123.

Proposed by: Derek Liu

Answer: 867

Solution: Note that nn ≡ 3 mod 8, so n ≡ 3 mod 8. Thus,

n3 ≡ nn ≡ 3 mod 5,

so n ≡ 27 mod 40. Then,
n7 ≡ nn ≡ −2 mod 25.

Cubing both sides and using the fact that n21 ≡ n mod 25,

n ≡ (−2)3 = −8 mod 25,

so n ≡ 67 mod 200. Then,
n67 ≡ nn ≡ −2 mod 25.

Cubing both sides and using the fact that n201 ≡ n mod 125,

n ≡ (−2)3 = −8 mod 125,

so n ≡ 867 mod 1000.

33. [17] Four points A, B, C, and D lie on a circle with radius 2 such that CD = 3, CA = CB, and
DA−DB = 1. Compute the maximum possible value of AB.

Proposed by: Rohan Bodke

Answer: 6
√
3

7

Solution: We have two cases on whether C is the midpoint of arc ÂDB or not.

Case 1. If C is the midpoint of arc ÂDB, then DA < DB, and so ABDC is a cyclic quadrilateral
with vertices in that order.

AB

C

D
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Applying Ptolemy’s on ABCD,

AB · CD +AC ·BD = AD ·BC =⇒ 3AB = CA(DA−DB) = CA = CB.

Thus, △ABC is similar to one with side lengths 1, 3, and 3, and has circumradius 2. The area of a

triangle with side lengths 1, 3, and 3 is 1
2

√
32 −

(
1
2

)2
=

√
35
4 , so its circumradius is

1 · 3 · 3
4 ·

√
35
4

=
9√
35

.

Thus, in order for △ABC to have a circumradius of 2, we must have AB = 2
√
35
9 .

Case 2. If C is not the midpoint of arc ÂDB, the direct application of Ptolemy’s theorem on ABCD
is not useful.

A BC

C ′

D

The idea is to construct the antipode C ′ of C. We have

C ′D =
√

(CC ′)2 − CD2 =
√
42 − 32 =

√
7,

so we can apply a similar argument as before. Since DA < DB, we have that AC ′DB is cyclic in this
order. By Ptolemy’s theorem on AC ′DB, we obtain

AC ′ ·DB +AB · C ′D = AD ·BC ′ =⇒
√
7AB = BC ′(DA−DB) = BC ′ = AC ′.

Thus, △ABC ′ is similar to one with side lengths 1,
√
7, and

√
7 and has circumradius 2. The area of

a 1-
√
7-
√
7 triangle is 1

2

√
7−

(
1
2

)2
= 3

√
3

4 , so its circumradius is

1 ·
√
7 ·

√
7

4 · 3
√
3

4

=
7
√
3

9
.

Thus, in order for △ABC ′ to have a circumradius of 2, we must have AB = 6
√
3

7 .

Conclusion. The two possible values of AB are 6
√
3

7 and 2
√
35
9 . However, we note that

6
√
3

7
=

√
108

49
>

√
2 >

√
140

81
=

2
√
35

9
,

so 6
√
3

7 is the maximum value.
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34. [20] Estimate the number of integers in {1, 2, 3, . . . , 108} that can be written in the form x2 − 2025y2

for some integers x and y.

Submit a positive integer E. If the correct answer is A, you will receive

⌊
20.99max

(
0, 1− |E−A|

A

)2.5⌋
points.

Proposed by: Derek Liu, Pitchayut Saengrungkongka

Answer: 6422804

Solution: Let N = 108, so lnN ≈ 18. Note that x2 − 2025y2 = (x − 45y)(x + 45y) is a product of
two numbers which are equivalent modulo 90. Conversely, if a and b are equivalent modulo 90, then
ab = x2 − 2025y2 where x = (a+ b)/2 and y = (a− b)/90. A naive estimate would be to simply count
the number of such pairs (a, b) with ab ≤ N . For each a, there are approximately N/(90a) such b that
work, so the total number of such pairs is around∫ N

1

N

90a
da =

1

90
N lnN ≈ 2 · 107.

Almost all pairs (a, b) pair up with (b, a) with the same product, so a first estimate might be half this
quantity, or 107 (which earns 2 points).

However, this is an overestimate because it ignores the fact that two pairs (a, b) and (a′, b′) might
consist of different values and still have the same product. A similar analysis as above shows that there
are around 1

4N lnN ≈ 4.5 · 108 unordered pairs (a, b) of the same parity with product at most N , but
there are only 3N/4 possible differences of squares (any value which is not 2 mod 4). Thus, on average,
each of these 3N/4 differences is hit by around 4.5/(3/4) = 6 pairs (a, b). Each pair has around a 1/45
chance of satisfying a ≡ b mod 90 (as they are already equivalent mod 2), so the “probability” of any
of these 6 pairs satisfying this is

1−
(
1− 1

45

)6

≈ 6

45
− 21

2025
≈ 0.133− 0.01 = 0.123.

This gives us a new estimate of

0.123 ·
(
3

4
N

)
≈ 9.225 · 106,

which earns 5 points.

This is still an overestimate because it assumes every number gets hit the same amount of times.
However, any number of the form x2 − 2025y2 must be a square mod 2025. Note that there are
27 + 3 + 1 = 31 squares mod 81 and 10 + 1 = 11 mod 25, so the number of squares mod 2025 is
31 · 11 = 341, or around one-sixth of all numbers. These also make up for approximately 1/6 of all
such pairs (a, b), so each of these pairs has around a 6/45 = 2/9 probability of satisfying a ≡ b mod 90.
The new “probability” becomes

1−
(
1− 2

15

)6

= 1− 136

156
≈ 1−

(
2200

3300

)2

=
5

9
,

giving us an approximation of
5

9

(
1

6
· 3
4
N

)
≈ 6.94 · 106,

which is a lot closer to the true value (earning 17 points).

This estimate still assumes that each of the 341 squares mod 2025 gets hit equally, but this isn’t true
either. For instance, 0 has 9 square roots mod 81 (the multiples of 9), but 1 only has 2 square roots.
We can get a better estimate by applying the above method, but doing casework on gcd(ab, 2025)
instead (note a ≡ b mod 45 implies this gcd is a square).
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• Suppose gcd(ab, 2025) = 1. We know 2
3 ·

4
5 = 8

15 of such pairs (a, b) satisfy this, and ab can be one
of 27 · 10 = 270 residues mod 2025, so collisions are about 8

15 · 2025
270 = 4 times more likely. The

number of values we get this way will be around(
1−

(
1− 4

45

)6
)(

3

4
· 270

2025
N

)
≈ 0.43 · 1

10
N ≈ 4.3 · 106,

approximating 1 − (1 − 4/45)6 ≈ 6(4/45) − 15(4/45)2 + 20(4/45)3 ≈ 0.53 − 0.12 + 0.02 = 0.43.
(Similar binomial expansions from now on will be omitted.)

• Suppose gcd(ab, 2025) = 9. We know 2
9 · 4

5 = 8
45 of such pairs (a, b) satisfy this, and ab can be

one of 3 · 10 = 30 residues mod 2025, so collisions are about 8
45 ·

2025
30 = 12 times more likely. The

number of values we get this way will be around(
1−

(
1− 12

45

)6
)(

3

4
· 30

2025
N

)
≈ 0.84 · 1

90
N ≈ 0.93 · 106.

• Suppose gcd(ab, 2025) = 25. We know 2
3 · 1

5 = 2
15 of such pairs (a, b) satisfy this, and ab can be

one of 27 · 1 = 27 residues mod 2025, so collisions are about 2
15 ·

2025
27 = 10 times more likely. The

number of values we get this way will be around(
1−

(
1− 10

45

)6
)(

3

4
· 27

2025
N

)
≈ 0.78 · 1

100
N ≈ 0.78 · 106.

• Suppose gcd(ab, 2025) = 81. We know 1
9 · 4

5 = 4
45 of such pairs (a, b) satisfy this, and ab can be

one of 1 · 10 = 10 residues mod 2025, so collisions are about 4
45 ·

2025
10 = 18 times more likely. The

number of values we get this way will be around(
1−

(
1− 18

45

)6
)(

3

4
· 10

2025
N

)
≈ 0.95 · 1

270
N ≈ 0.35 · 106.

• One can similarly check that in the remaining cases gcd(ab, 2025) = 225 and 2025, which make
up for 4 residues mod 2025, collisions are about 36 and 45 times more likely, respectively. Since
(1− 36/45)6 ≈ 0, we may as well assume the number of values is

3

4
· 4

2025
N ≈ 0.14 · 106.

Adding these values up, we get

4.3 · 106 + 0.93 · 106 + 0.78 · 106 + 0.35 · 106 + 0.14 · 106 = 6.5 · 106,

which is accurate enough for all 20 points.

Apart from simply making better estimates, another further refinement that can be made is the fol-
lowing. Note that a number around x has approximately

∑x
i=1 1/x ≈ lnx divisors on average, as it

has a 1/i chance of being divisible by i. Thus, we may assume that the number of times a product
n = ab is hit is proportional to lnx. If we assume x ̸≡ 2 mod 4 is hit c lnx times, then the number of
pairs (a, b) would be

3

4

∫ N

1

c lnx dx =
3

4
c[x lnx− x]Nx=1 ≈ 3

4
cN lnN.

We know this quantity is around 1
4N lnN , so c ≈ 1/3, i.e., x is hit around (1/3) lnx times. We can

use this to approximate the number of values in each case as an integral instead; for example, the
gcd(ab, 2025) = 1 case would yield

3

4
· 270

2025

∫ N

1

(
1−

(
1− 4

45

)(1/3) ln x
)

dx.
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Note that the integrand is simply 1−xm where m = (1/3) ln(1−4/45), so this integral can be computed
fairly easily. (It evaluates to around 4.17 ·106, which is somewhat of an underestimate, but this mainly
stems from the fact that our estimate for c is too high since we ignored the −N term when integrating).

35. [20] Derek has a 45 × 45 grid of cells. Initially, every cell in the grid is uncolored. Every second, he
picks one of the remaining uncolored cells uniformly at random and colors it in. He stops once there
exist two distinct colored cells that share an edge. Estimate the expected number of seconds before
Derek stops.

Submit a real number E. If the correct answer is A, you will receive ⌈max(0, 20−7|E−A|3/4)⌉ points.
Proposed by: Derek Liu

Answer: ≈ 29.267

Solution: Let n = 45. As a heuristic, after m cells are shaded, each pair of adjacent cells has around a
(m/n2)2 probability of being colored. There are approximately 2n2 such pairs, so the expected number
of pairs that are colored is 2n2(m/n2)2 = 2m2/n2. Since we stop after one such pair exists, we might
expect this value to be 1, so m ≈ m/

√
2 ≈ 32, which attains 6 points.

For a much better estimate, let X be the number of seconds that elapse. Let p = 2n(n−1)

(n
2

2 )
= 4

n(n+1) ≈

0.002 be the probability that two random distinct cells are adjacent. Assuming that this probability is
independent for each pair (which is reasonable as this probability is very small), the probability that
none of the first k colored cells are pairwise adjacent is (1 − p)k(k−1)/2. This is the probability that
X > k, so

E[X] ≈
∞∑
k=0

Pr[X > k] =

∞∑
k=0

(1− p)k(k−1)/2.

We can approximate this sum with an integral:

E[X] ≈
∫ ∞

−1/2

(1− p)x(x−1)/2 dx = (1− p)−1/8

∫ ∞

−1/2

(1− p)(x−1/2)2/2 dx.

Note that (1 − p)−1/8 is extremely close to 1, so we ignore that factor. Let c = ln(1 − p) ≈ −p. By
shifting, this integral is ∫ ∞

−1

(1− p)x
2/2 dx =

∫ ∞

−1

ecx
2/2 dx.

Performing a u-substitution of u = x
√
−c, this integral becomes

1√
−c

∫ ∞

√
−c

e−x2/2 dx.

We know that
∫∞
0

e−x2

dx =
√
π/2. Since

√
−c ≈ 0,∫ ∞

√
−c

e−x2/2 dx ≈
√
−ce−02/2 +

∫ ∞

0

e−x2/2 dx =
√
−c+

√
π

2
,

so our estimation becomes
1√
−c

(√
−c+

√
π

2

)
= 1 +

1√
−c

·
√

π

2
.

Observe that
1√
−c

≈ 1
√
p
=

√
n(n+ 1)

4
≈ n+ 0.5

2
=

91

4
,

while
√

π/2 ≈ 5/4 (as π ≈ 25/8), so our estimate is

1 +
91

4
· 5
4
≈ 29.44,
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which gets 19 points (possibly 18, depending on the numerical estimations we use).

It turns out that
√

π/2 is actually around 1.253, and our estimate should be around 29.5 as a result.
The reason we have an overestimate is that our independence assumptions work better when we assume
cells are being colored with replacement (i.e., the same cell may be selected several times); the effect
this has on p is negligible. Thus, it remains to estimate the number of distinct cells that are selected
when 29.5 cells with replacement are selected on average. We assume the probability of a cell being
selected 3 or more times is negligible, so the number of distinct cells is simply 29.5 minus the number of
pairs of selected cells which are the same. Each pair of selected cells has a 1/2025 probability of being
the same, and there are (29.5 · 28.5)/2 such pairs, so by linearity of expectation, our new estimate is

29.5− (29.5 · 28.5)/2
2025

≈ 29.29,

close enough for all 20 points.

36. [20] For each of the following properties, compute the smallest positive perfect square n with that
property. (Unless otherwise specified, assume all numbers are written in base 10.)

1. n contains at least 4 of the same nonzero digit.

2. n starts with the same 2-digit number repeated twice (i.e., abab for digits a and b).

3. n > 2025 contains 2025 as a contiguous substring.

4. n contains 2520 as a contiguous substring.

5. The sum of the digits of n is 25.

6. When n is written in base 2025, the sum of its digits is 2025. (Submit n in base 10.)

7. n > 10000, and the last four digits of n are also a perfect square (possibly with leading 0s).

8. n2 has 2025 positive divisors.

9. n has two positive divisors that sum to 2025.

Submit an 9-tuple of integers corresponding to the answers above, or an X for any value you wish to
leave blank. For instance, if you think the first and last answers are 2025, you should submit “2025,
X, X, X, X, X, X, X, 2025”. If you submit C values and they are all correct, then you will receive
⌊C2/4⌋ points. Otherwise, you will receive 0 points.

Proposed by: Derek Liu, Qiao Zhang

Answer: 44944, 40401, 42025, 252004, 4489, 212521, 15625, 1587600, 3600

Solution: Almost all of these require some amount of casework, but clever optimization allows for
minimal computation.

1. Clearly no 4-digit square has the same digit repeated 4 times. If there exists such a 5-digit square,
either its last 2 digits are the same, or its first 3 digits are the same. (In either case, this digit is
nonzero.)

We consider the former case first. Observe no square ends in 22, 33, 77, or 88 because no square
ends in 2, 3, 7, or 8. Furthermore, no square ends in 11, 55, 66, or 99 because no square is 2 or 3
modulo 4. Thus, such a square would have to end in 44. No square n ends in 4444, as otherwise
n/4 would be a square ending in 11. Thus, we need only check squares of the form 4ab44 where

either a or b is 4. It is easy to check that 44944 is the only such square.

For the latter case, it suffices to check squares starting with 111, 222, 333, and 444. The only
such square is 22201, which does not satisfy the required property.
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2. No 4-digit square works as it would have to be divisible by 101, so it suffices to check 5-digit
squares.

Observe that if n ends in the digit d, then n ≡ d mod 101. Suppose n = m2. If d = x2 is a square,
then m2 − x2 is divisible by 1010, so one of m ± x is divisible by 101 and hence 202, and one of
m ± x is divisible by 5 and hence 10. Furthermore, x ≤ 3, so the smallest possible solution is
m = 201 and x = 1, yielding 2012 = 40401 .

Otherwise, d = 5 or d = 6. We can rule out d = 5 as follows. Recall x52 = y25 where y = x(x+1),
so y would have to be a2a for some digit a ̸= 0. No such digit works (and only a ≤ 3 needs to be
checked).

Ruling out d = 6 is trickier. The square roots of 6 mod 101 are 39 and 62, so m mod 101 would
have to be one of these. It suffices to consider m between 100 and 201, so only m = 140 and 163
need to be checked; in either case, m2 does not end in 6.

3. No 5-digit square starts with 2025, so it suffices to consider 5-digit squares ending in 2025. Recall
that x52 = y25 where y = x(x + 1); here, we want y to end in 20. It can be seen that y cannot

be 120, 220, or 320, but 420 = 20 · 21 works, so n = 42025 .

4. No 4-digit square works. No square ends in 2520 as no square only ends in one 0, and it can be
checked no 5-digit square starts with 2520. Thus, it suffices to consider 6-digit squares. We know

(502)2 = 5002 + 2 · 2 · 500 + 22 = 252004

works, so we only need to check no 6-digit squares start with 12520 or 22520, which is true.

5. Clearly, n has at least 4 digits. Furthermore, n ≡ 7 mod 9, so
√
n is either 4 or 5 mod 9. Since√

n ≥ 32, the possible values of
√
n to check are 32, 40, 41, 49, 50, 58, 59, and 67 (the last of

which works).

We can narrow this search further. If n2 has 4 digits that sum to 25, then the first and last digits
must sum to at least 7. Thus, of the above values, clearly only 58 and 67 need to be checked.
582 = 3364 fails, but 672 = 4489 works.

6. Observe n ≡ 2025 ≡ 1 mod 2024, so n = m2 is 1 mod 8, 11, and 23. The first of these simply
means m is odd. We know m must be a square root of 1 mod 253; there are four possible square
roots, corresponding to the values which are ±1 mod both 11 and 23. Conveniently, we already
know 1 and 45 are two such roots, so the other two are 253 − 45 = 208 and 253 − 1 = 252.
Since 1 and 45 are too small for m, and the next four values are all even, the smallest m can be
is 253 + 208 = 461, yielding n = 212521 . Its base-2025 expansion need not be checked; since
2025 < n < 20242 and n ≡ 1 mod 2024, we know n = 2024a + 2025 for some 1 ≤ a ≤ 2024. If
b = 2025− a, then b = 2025a+ b = ab2025, and its digit sum is a+ b = 2025.

7. Let us suppose n = a2 is a 5-digit square starting with 1, which is the smallest it could be. Let
n − 10000 = b2. Then, (a − b)(a + b) = 10000, so we want to write 10000 as a product of two
factors a− b and a+ b with the smallest possible sum. We know these two factors have the same
parity (ruling out 80 · 125), so the best we can do is 50 · 200, giving us a = 125 and n = 15625 .

8. We know n2 is a fourth power, so its prime factorization can be written as pe11 pe22 . . . where each ei
is 1 mod 4. Since

∏
i(ei + 1) = 2025 = 3452, we must write 2025 as a product of 1 mod 4 factors.

The best way to do so is 9 · 9 · 5 · 5, yielding n = 24 · 34 · 52 · 72 = 12602 = 1587600 . (This is a
lot better than 25 · 9 · 9, which yields 212 · 34 · 54 = 144002.)

9. Observe that 1800 + 225 = 2025, so n = 3600 works. Now assume for sake of contradiction that
n < 3600. Since 2025 is odd, the two divisors that sum to 2025 must be distinct. Note that
(n/3) + (n/4) = 7n/12, which is less than 2025 unless n = 592, which clearly fails; thus, one of
the divisors must be either n or n/2.

If n is one of the divisors, let the other one be n/d for some positive integer d. Then, 2025 =
n+ n/d = n · (d+ 1)/d, so (d+ 1)/d = 2025/n must be a quotient of two squares. But d+ 1 and
d cannot both be squares, contradiction.
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If n/2 is one of the divisors, let the other one be n/d for some positive integer d. Then,

2025 =
n

2
+

n

d
= n

(
d/2 + 1

d

)
=⇒ d/2 + 1

d
=

2025

n
.

Since n is even, it is divisible by 4, so n/2 is even. We cannot have both n/2 and n/d even as they
sum to 2025, so n/d is odd; hence, d is divisible by 4. It follows that d/2 + 1 and d are relatively
prime (as the former is odd), so they are both squares. The above equation shows we want d to

be as small as possible to minimize n; while d = 4 fails, d = 16 works, which yields n = 3600 .

This covers both cases. Hence, no smaller n exists.
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